

КОМПЛЕКС ПОВЕРОЧНЫЙ

ВЗЛЕТ КПИ

ИСПОЛНЕНИЯ КПИВ-032, -033

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

B64.00-00.00 РЭ

Россия, Санкт-Петербург

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015) органом по сертификации ООО «Тест-С.-Петербург», на соответствие СТО Газпром 9001-2018 органом по сертификации АС «Русский Регистр»

АО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ, 198097 E-mail: mail@vzljot.ru

www.vzljot.ru

Call-центр 28-800-333-888-7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
ГАРАНТИИ ИЗГОТОВИТЕЛЯ	5
1. ОПИСАНИЕ И РАБОТА	6
1.1. Назначение	6
1.2. Технические характеристики	7
1.3. Метрологические характеристики	9
1.4. Состав	10
1.5. Устройство и работа	11
2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	14
2.1. Эксплуатационные ограничения	14
2.2. Меры безопасности	
2.3. Подготовка к работе	15
2.4. Порядок работы при использовании программы «Взлет КПИ 0)32»16
3. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ	24
4. МЕТОДИКА ПОВЕРКИ	25
5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	35
6. МАРКИРОВКА И ПЛОМБИРОВАНИЕ	36
7. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	37
ПРИЛОЖЕНИЕ А. Вид комплекса поверочного исполнения КПИВ-032	38
ПРИЛОЖЕНИЕ Б. Кабели присоединительные	39

Настоящий документ распространяется на комплекс поверочный «ВЗЛЕТ КПИ» (далее – комплекс, КПИ) исполнений КПИВ-032, -033 и предназначен для ознакомления с устройством и порядком эксплуатации комплекса.

В связи с постоянной работой над усовершенствованием комплекса возможны отличия от настоящего руководства, не влияющие на функциональные возможности и метрологические характеристики КПИ.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ВИП - вторичный источник питания;

КПИ - комплекс поверочный;

ПК - персональный компьютер;

ПО - программное обеспечение;

ФИС - формирователь импульсных сигналов;

ФПТ - формирователь сигналов постоянного тока;

ФСС - формирователь сигналов сопротивления.

- Комплекс поверочный «ВЗЛЕТ КПИ» зарегистрирован в Государственном реестре средств измерений РФ под № 14510-12 (свидетельство об утверждении типа средств измерений RU.C29.006.A № 46946/1);
- Комплекс поверочный «ВЗЛЕТ КПИ» соответствует требованиям Технического регламента Таможенного союза ТР ТС 004/2011 «О безопасности низковольтного оборудования» и ТР ТС 020/2011 «Электромагнитная совместимость технических средств» (регистрационный номер декларации о соответствии ТС N RU Д-RU.МЛ03.В.00278).

Удостоверяющие документы размещены на сайте www.vzljot.ru

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- І. Изготовитель гарантирует соответствие комплексов поверочных «ВЗЛЕТ КПИ» исполнений КПИВ-032, -033 техническим условиям в пределах гарантийного срока, указанного в паспорте на изделие, при соблюдении следующих условий:
 - 1. Хранение, транспортирование, монтаж и эксплуатация изделия осуществляются в соответствии с требованиями эксплуатационной документации.
 - 2. Ввод в эксплуатацию проведен специализированной организацией, имеющей право на выполнение данного вида работ.
- II. В случае выхода оборудования из строя, гарантийный ремонт производится в головном или региональных сервисных центрах, авторизированных по работе с оборудованием торговой марки Взлет, при соблюдении условий эксплуатации и требований, указанных в эксплуатационной документации.
- III.Изготовитель не несет гарантийных обязательств в следующих случаях:
 - а) отсутствует паспорт на изделие;
 - б) изделие имеет механические повреждения;
 - в) изделие хранилось, транспортировалось, монтировалось или эксплуатировалось с нарушением требований эксплуатационной документации на изделие;
 - г) отсутствует или повреждена пломба с поверительным клеймом;
 - д) изделие подвергалось разборке или доработке:
 - е) гарантия не распространяется на расходные материалы и детали, имеющие ограниченный срок службы.

Информация по сервисному обслуживанию представлена на сайте http: www.vzliot.ru в разделе Сервис.

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

Комплекс поверочный «ВЗЛЕТ КПИ» исполнений КПИВ-032, -033 предназначен для настройки, поверки, юстировки, калибровки и других работ по определению метрологических характеристик теплосчетчиков и тепловычислителей, выпущенных фирмой «ВЗЛЕТ», а также приборов других производителей, имеющих входные измерительные сигналы в виде постоянного тока, импульсов (частоты) и сопротивления.

КПИ может применяться при производстве средств измерений, в центрах стандартизации и метрологии, а также в любых отраслях промышленно-хозяйственного комплекса. КПИ может использоваться в составе других поверочных комплексов и систем.

Комплекс поверочный обеспечивает:

- генерацию непрерывной импульсной последовательности с заданной частотой следования;
- генерацию заданного количества импульсов;
- генерацию постоянного тока с заданными параметрами;
- генерацию сигналов сопротивления;
- вывод результатов измерений и установочных данных по интерфейсам RS-232 (RS-485), USB на IBM-совместимый персональный компьютер (ПК).
- автоматизированную поверку теплосчетчиков и тепловычислителей, выпущенных фирмой «ВЗЛЕТ».

1.2. Технические характеристики

- 1.2.1. Параметры выходных сигналов:
 - диапазон генерируемой частоты от 0,5 до 3000 Гц;
 - дискретность установки частоты 0,1 и 1,0 Гц;
 - емкость счетчика импульсов 10⁶ имп.;
 - диапазон постоянного тока от 0 до 20 мА;
 - диапазон формируемых сигналов электрического сопротивления от 80 до 1500 Ом;
 - сигналы сопротивления соответствуют значениям сопротивления платиновых термопреобразователей, указанных в табл.1, при температурах (минус 50 ± 5) 0 C; (плюс 30 ± 2) 0 C; (плюс 70 ± 2) 0 C и (плюс $130\pm5,5$) 0 C.

Таблица 1

Номинальное значение	Условное обозначение номинальной статической			
сопротивления	характеристики преобразования			
термопреобразователя при 0°C, R₀, Ом	по ГОСТ 6651-94		по ГОСТ 6651-2006	
100	100П, Pt100	$W_{100} = 1,3850$	Pt100	$\alpha = 0.00385 \cdot {^{\circ}C^{-1}}$
	Pt′100	$W_{100} = 1,3910$	100Π	$\alpha = 0.00391 \cdot {^{\circ}C^{-1}}$
500	500П, Pt500	$W_{100} = 1,3850$	Pt500	$\alpha = 0.00385 \cdot {^{\circ}C^{-1}}$
	Pt'500	$W_{100} = 1,3910$	500∏	$\alpha = 0.00391 \cdot {^{\circ}C^{-1}}$
1000	1000∏, t1000	$W_{100} = 1,3850$	Pt1000	$\alpha = 0.00385 \cdot {^{\circ}C^{-1}}$
	Pt′1000	$W_{100} = 1,3910$	1000Π	$\alpha = 0.00391 \cdot {^{\circ}C^{-1}}$

- 1.2.2. Количество каналов формирования выходных сигналов:
 - частотно-импульсных 8;
 - токовых 6;
 - сопротивления 6.
- 1.2.3. Эксплуатационные параметры КПИ:
 - электропитание однофазное напряжение переменного тока (187-242) В (50±1) Гц;
 - потребляемая мощность не более 10 ВА;
 - средняя наработка на отказ, 75 000 ч;
 - средний срок службы, 12 лет;
 - габаритные размеры не более 235×165×110 мм;
 - масса без упаковки не более 5 кг.
- 1.2.4. Устойчивость КПИ к внешним воздействующим факторам в рабочем режиме:
 - температура окружающей среды от 10 до 35°C;
 - относительная влажность до 75% при температуре не более 30 °C, без конденсации влаги;

- атмосферное давление от 84,0 до 106,7 кПа;
- синусоидальная вибрация от 10 до 55 Гц с амплитудой 0,15 мм. Степень защиты комплекса соответствует коду IP20 по ГОСТ 14254.
- 1.2.5. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

1.3. Метрологические характеристики

1.3.1. Пределы допускаемой относительной погрешности при формировании импульсных сигналов заданной частоты следования не превышают ± 0,1 %.

Пределы допускаемой абсолютной погрешности при формировании заданного количества импульсов не превышают ±1 импульс.

1.3.2. Пределы допускаемой приведенной погрешности при формировании сигналов постоянного тока в диапазоне (0-5) мА не превышают ± 0,15 %.

Пределы допускаемой относительной погрешности при формировании сигналов постоянного тока в диапазоне (5-20) мА не превышают $\pm 0,15\%$.

1.3.3. Пределы допускаемой относительной погрешности при формировании сигнала сопротивления не превышают ± 0,02%.

1.4. Состав

Комплект поставки КПИ приведен в табл.2.

Таблица 2

Наименование и условное обозначение	Кол-во	Примечание
1. Комплекс поверочный КПИВ-032	1	Примечание 1
2. Комплект кабелей соединительных	1	Приложение Б
3. Персональный компьютер		Только для
	1	КПИВ-033
4. Паспорт	1	
5. Эксплуатационная документация (комплект)	1	
6. Программное обеспечение пользователя		Примечание 2

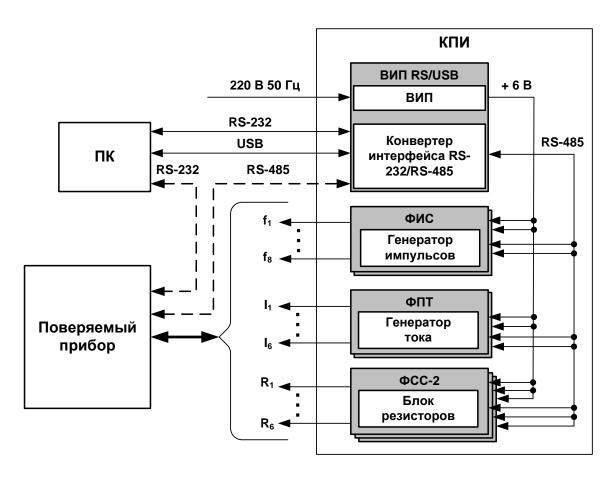
ПРИМЕЧАНИЯ.

- 1. Исполнение КПИВ-033 обозначает поставку комплекса поверочного «ВЗЛЕТ КПИ» исполнения КПИВ-032 вместе с персональным компьютером.
- 2. Поставляется следующее программное обеспечение (ПО):
 - «ВЗЛЕТ СЕРВЕР СВЯЗИ» для обеспечения динамического обмена данными между ПК, КПИ и поверяемыми приборами;
 - «Взлет КПИ 032» для обеспечения поверки теплосчетчиков фирмы «ВЗЛЕТ» и самого КПИ;
 - «Автоматическая поверка BPCГ(КГ)», работающая под оболочкой «VzljotMaster-Viewer» для обеспечения поверки корректора газа «ВЗЛЕТ КГ» из состава расходомера-счетчика вихревого «ВЗЛЕТ BPC».

В качестве устройства управления и индикации с КПИ должен использоваться IBM-совместимый ПК с установленным специальным ПО. Системные требования к ПК:

- тактовая частота центрального процессора не менее 800 МГц;
- объем оперативной памяти (ОЗУ) 128 Мбайт;
- емкость жесткого диска 4 Гбайта.

Эксплуатационная документация, карты заказа и программное обеспечение на данное изделие и другую продукцию, выпускаемую фирмой «ВЗЛЕТ», размещены на сайте по адресу www.vzljot.ru.



1.5. Устройство и работа

1.5.1. Структурная схема комплекса

Комплекс поверочный ВЗЛЕТ КПИ исполнения КПИВ-032 (Приложение A) представляет собой микропроцессорное устройство, состоящее из 8-ми модулей: 1-го модуля ВИП RS/USB (вторичного источника питания и конвертора интерфейса), 2-х модулей ФИС (формирователей импульсных сигналов), 2-х модулей ФПТ (формирователей сигналов постоянного тока) и 3-х модулей ФСС-2 (формирователей сигналов сопротивления). Модули между собой связаны по цепям питания и интерфейса RS-485.

Структурная схема комплекса приведена на рис.1.

ВИП — вторичный источник питания; КПИ — комплект поверочный; ПК — персональный компьютер; ФИС — формирователь импульсных сигналов; ФПТ — формирователь сигналов постоянного тока; ФСС — формирователь сигналов сопротивления.

Рис. 1. Структурная схема комплекса.

1.5.2. Модули КПИ

- 1.5.2.1. Модуль ВИП RS/USB выполняет следующие функции:
 - преобразует сетевое переменное напряжения 220 В в постоянное напряжение +6 В;
 - осуществляет взаимное преобразование интерфейсов RS-232 и RS-485;
 - обеспечивает связь с ПК по интерфейсу USB;
 - сигнализирует о включении питания прибора.
- 1.5.2.2. Модуль ФИС обеспечивает выдачу импульсов по 4-м каналам и может работать в режимах генерации заданной частоты либо заданного количества импульсов с параметрами, назначенными пользователем. Возможна как совместная, так и раздельная установка параметров выходных сигналов.

Оконечные каскады частотно-импульсных выходов модуля могут работать как при питании от внутреннего развязанного источника питания (активный режим), так и от внешнего источника питания (пассивный режим). Работа в активном режиме сопровождается свечением светодиода зеленого цвета на лицевой панели модуля.

В активном режиме напряжение на выходе, соответствующее уровню логической единицы, – не менее 4,75 В и соответствующее уровню логического нуля – не более 0,4 В при нагрузке сопротивлением $R_{\rm H} = 10^4$ Ом. При другом значении $R_{\rm H}$ (Ом) напряжение рассчитывается по формуле: $5 \cdot (1-510/R_{\rm f})$.

В пассивном режиме напряжение на выходе, соответствующее уровню логической единицы, – не менее 5,4 В и соответствующее уровню логического нуля – не более 0,4 В при внешнем напряжении питания выходного каскада 5,5 В.

1.5.2.3 Модуль ФПТ обеспечивает генерацию постоянного тока в диапазоне от 0 до 20 мА при нагрузке не более 600 Ом по 3-м гальванически развязанным каналам. Возможна как совместная, так и раздельная установка параметров выходных сигналов.

При обрыве токовой петли (отсутствии нагрузки при ненулевом токе) загорается светодиод красного цвета данного канала на лицевой панели модуля.

- 1.5.2.4 Модуль ФСС-2 обеспечивает 4-х проводное подключение к 2-м гальванически развязанным каналам, на выходе которых имитируются сигналы термопреобразователей сопротивления различных типов (см. табл.1). Возможна как совместная, так и раздельная установка параметров выходных сигналов.
 - 1.5.3. В качестве устройства управления и индикации КПИ используется ПК со специальным программным обеспечением. ПК подключается к модулю ВИП RS/USB по интерфейсу RS-232 либо USB. Поверяемый прибор может подключаться либо к ПК по интерфейсу RS-

- 232, либо к модулю ВИП RS/USB по интерфейсу RS-485. Комплекс, ПК и поверяемый прибор образуют локальную сеть.
- 1.5.4. Конструктивно КПИ выполнен из набора функционально законченных модулей, размещенных в общем корпусе. Корпус КПИ в горизонтальной плоскости разделен на две части, скрепляемых защелками.

Внешний вид и массогабаритные характеристики КПИ приведены Приложении А.

На лицевой панели ВИП RS/USB находятся выключатель, светодиодные индикаторы включения питания и обмена данными по RS-232 (RS-485). На задней панели – ввод кабеля питания, клемма защитного заземления и разъемы интерфейсов RS-232 и RS-485. Защита вторичного источника питания осуществляется с помощью самовосстанавливающегося предохранителя.

На лицевых панелях других модулей размещены:

- модулей ФИС разъемы импульсных выходов и светодиодные индикаторы режима работы выходных каскадов;
- модулей ФПТ разъемы токовых выходов и светодиодные индикаторы обрыва токовой петли;
- модулей ФСС-2 разъемы выходов сигналов сопротивления.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения

2.1.1. Эксплуатация комплекса должна производиться в условиях воздействующих факторов, не превышающих допустимых значений, оговоренных в настоящем руководстве.

Характеристики контролируемого объекта должны соответствовать функциональным и метрологическим параметрам комплекса.

2.1.2. Расстояние от электрических кабелей с напряжением 220 В и более до кабелей связи комплекса с контролируемыми приборами должно быть не менее 0,3 м.

2.2. Меры безопасности

- 2.2.1. К работе с изделием допускается обслуживающий персонал, ознакомленный с эксплуатационной документацией на изделие и поверяемые приборы.
- 2.2.2. При подготовке изделия к использованию должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».
- 2.2.3. При проведении работ с комплексом опасным фактором является переменное напряжение с действующим значением до 242 В частотой 50 Гц.
- 2.2.4. При обнаружении внешних повреждений изделия или сетевой проводки следует отключить изделие до выяснения причин неисправности специалистом по ремонту.
- 2.2.5. В процессе эксплуатации КПИ запрещается:
 - производить замену электрорадиоэлементов во включенном приборе;
 - использовать неисправные электрорадиоприборы, электроинструменты, а также без подключения их корпусов к магистрали защитного заземления.

2.3. Подготовка к работе

- 2.3.1. Подключение поверяемого оборудования к комплексу производится в соответствии с маркировкой на его лицевой панели, маркировкой соединительных кабелей, входящих в комплект поставки, и указаниями эксплуатационной документации на поверяемые изделия.
- 2.3.2. Подключение поверяемого прибора по последовательному интерфейсу может производиться двумя способами:
 - к СОМ-порту ПК по интерфейсу RS-232 нуль-модемным кабелем из комплекта КПИ, если ПК имеет два раздельных СОМ-порта. Схема распайки кабеля приведена в Приложении В.
 - к КПИ по интерфейсу RS-485 через разъем «RS-485», расположенный на задней панели модуля ВИП RS/USB. Верхний контакт разъема сигнал «DATA+», нижний контакт сигнал «DATA-». В этом случае скорости связи модулей «ВЗЛЕТ КПИ» и прибора должны быть одинаковыми 9600 Бод.
- 2.3.3. До начала работы всё оборудование, включая поверяемые расходомеры, должно предварительно прогреться в течение 15-20 минут.

2.4. Порядок работы при использовании программы «Взлет КПИ 032»

ПО «Взлет КПИ 032» используется для управления комплексом «ВЗЛЕТ КПИ» исполнений КПИВ-032,-033. Связь ПО с комплексом осуществляют через «Взлет Сервер Связи», который должен быть установлен на ПК.

- 2.4.1. Настройка программного обеспечения
- 2.4.1.1. Запустить на ПК программу «Взлет КПИ 032», после чего на экране монитора отобразится основное окно (рис.2).

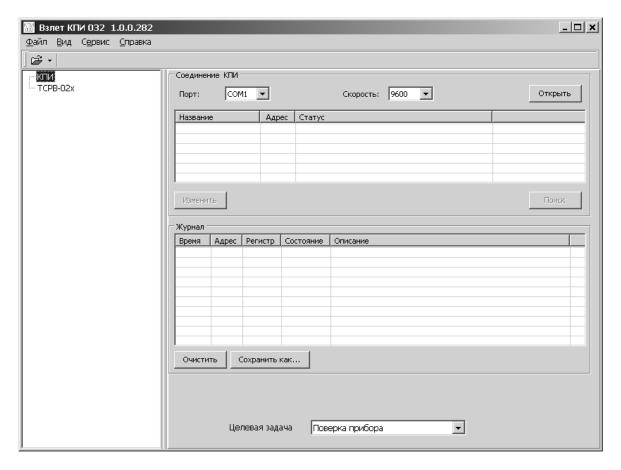


Рис. 2. Вид основного окна программы.

Перед началом работы выполняется настройка программы:

- задается целевая задача;
- задаются параметры связи ПК с КПИ;
- подключаются программно требуемые модули КПИ;
- выбирается тип поверяемого прибора.
- 2.4.1.2. Для назначения целевой задачи, необходимо нажать кнопку в поле параметра **Целевая задача** (рис.3) и в раскрывшемся списке установить курсор в строке с соответствующим наименованием задачи.

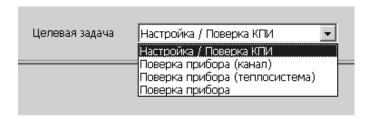


Рис. 3. Вид поля со списком целевых задач.

2.4.1.2. Назначение параметров связи ПК с КПИ производится в области **Соединение КПИ** (рис.4).

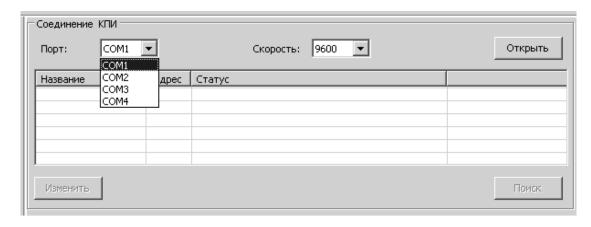


Рис. 4. Вид области Соединение КПИ.

Для параметра **Порт** из выпадающего списка значений следует выбрать и установить индекс COM-порта ПК, к которому подключен КПИ. Значение параметра **Скорость**, равное **9600**, рекомендуется не изменять.

После этого нажать кнопку **Открыть** – становится активной кнопка **Поиск**.

2.4.1.3. Для программного подключения требуемых модулей КПИ нажать кнопку **Поиск** и в появившемся окне **Поиск приборов** (рис.5) установить адреса модулей КПИ.

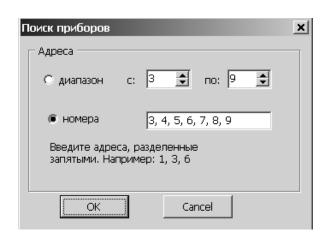


Рис. 5. Вид окна «Поиск приборов».

Возможно задание отдельных номеров адресов, если установлен флажок **номера**, либо диапазона номеров, если установлен флажок **диапазон**.

По умолчанию, адреса с номерами 1 и 2 зарезервированы для поверяемого прибора, с номерами 3, 4, 5, 6, 7, 8, 9 — для модулей КПИ. Пользователь, при необходимости, может изменить адресацию модулей КПИ, за исключением адресации для модулей ФСС-2. Адреса модулей ФСС-2 устанавливаются при выпуске из производства и пользователю для редактирования недоступны.

После установки номеров адресов нажать кнопку **ОК**. Будет произведен программный поиск модулей с установленными адресами. Результаты поиска (рис.6) отобразятся в виде дерева наименований модулей (левая часть окна) и в виде списка наименований модулей (область **Соединение КПИ**).

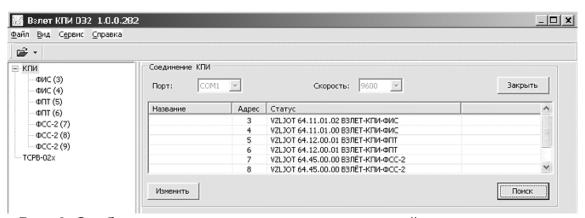


Рис. 6. Отображение результатов поиска модулей в окне программы.

- 2.4.1.4. Для назначения типа поверяемого прибора необходимо:
 - в строке меню основного окна (рис.2) выбрать команду **Сервис** / **Параметры**;
 - в появившемся окне **Параметры** (рис.7) выбрать из списка требуемый тип прибора и нажать кнопку **ОК**.

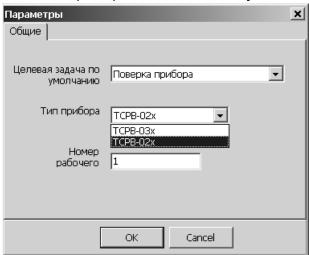


Рис. 7. Вид окна «Параметры».

2.4.2. Управление модулями КПИ.

2.4.2.1. Управление модулем ФИС.

Для отображения на экране монитора окна управления одним из модулей ФИС следует щелкнуть левой кнопкой мыши на наименовании требуемого модуля ФИС в левой части окна программы (рис.6). Окно управления модулем ФИС будет иметь вид, показанный на рис.8.

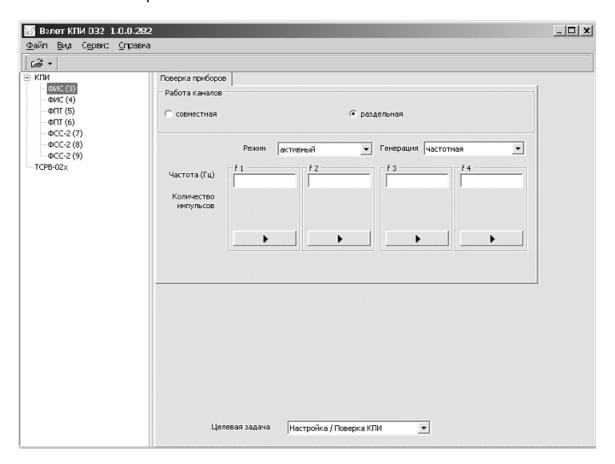


Рис. 8. Вид окна управления модулем ФИС в режиме генерации частоты.

По умолчанию модуль находится в режиме генерации частоты – для параметра **Генерация** установлено значение **частотная**.

Перед началом работы следует задать:

- режим работы выходов активный или пассивный, установив соответствующее значение для параметра **Режим**;
- режим управления каналами совместный или раздельный, установив флажок совместная или раздельная в области Работа каналов;
- значение генерируемой частоты. При совместном управлении значение частоты задается в поле параметра **f1** одновременно для всех каналов. При раздельном управлении значения частоты за-

даются в полях параметров **f1**, **f2**, **f3** и **f4** для каждого канала отдельно.

Для запуска процесса генерации частоты следует нажать кнопку со значком ▶ (кнопка запуска / останова процесса генерации). При этом если задан совместный режим управления каналами, то достаточно нажать кнопку только в области f1. Если задан раздельный режим управления каналами, то следует нажать кнопки в областях f1, f2, f3 и f4.

После начала генерации значок на кнопке примет вид ■. Нажатие на кнопку со значком ■ приводит к останову процесса генерации частоты. Значок на кнопке снова примет вид ▶.

Внимание! Изменить первоначально установленное значение частоты возможно только после останова процесса генерации (нажатия кнопки со значком ■).

Для задания генерации последовательности импульсов необходимо параметру **Генерация** установить значение **импульсная**. При этом окно управления модулем ФИС примет вид, показанный на рис.9.

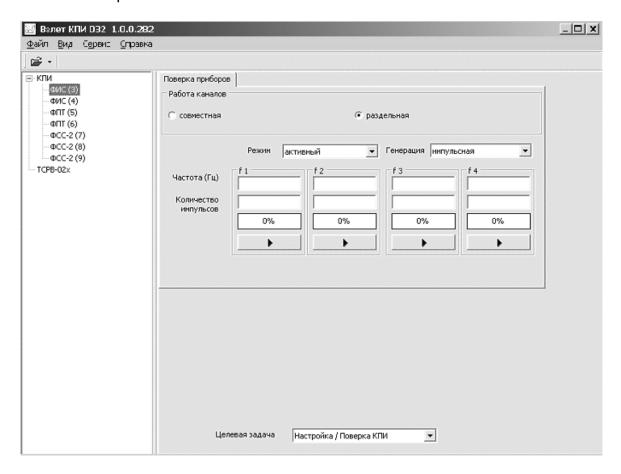


Рис. 9. Вид окна управления модулем ФИС в режиме генерации последовательности импульсов.

Перед началом генерации необходимо задать требуемое количество импульсов и частоту их следования.

Порядок управления модулем ФИС в режиме генерации последовательности импульсов такой же, как в режиме генерации частоты.

Количество сгенерированных импульсов отображается в % в полях, расположенных над кнопками запуска / останова процесса генерации.

2.4.2.2. Управление модулем ФПТ.

Для отображения на экране монитора окна управления одним из модулей ФПТ следует щелкнуть левой кнопкой мыши на наименовании требуемого модуля ФПТ в левой части окна программы (рис.6). Окно управления модулем ФПТ будет иметь вид, показанный на рис.10.

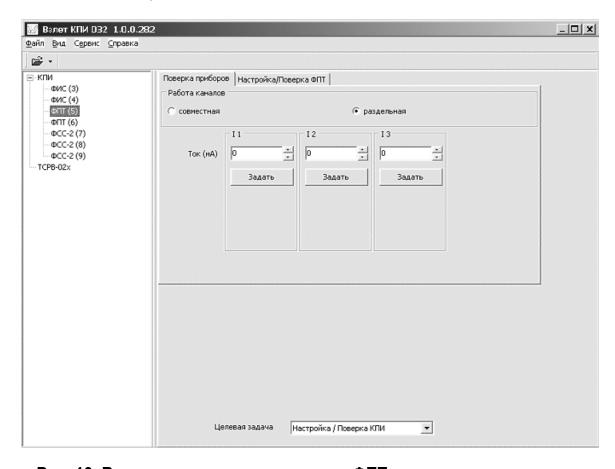


Рис. 10. Вид окна управления модулем ФПТ.

Перед началом работы следует задать:

- режим управления каналами совместный или раздельный, установив флажок совместная или раздельная в области Работа каналов;
- значение генерируемого тока. При совместном управлении значение тока задается в области **I1** одновременно для всех каналов. При раздельном управлении значения тока задаются в областях **I1**, **I2**, **I3** для каждого канала отдельно.

Для запуска процесса генерации тока следует нажать кнопку **Задать**. При этом если задан совместный режим управления каналами, то достаточно нажать кнопку только в области **I1**. Если задан раздельный режим управления каналами, то следует нажать кнопки в областях **I1**, **I2**, **I3** для каждого канала отдельно.

Для останова процесса генерации следует ввести нулевое значение тока и нажать кнопку **Задать**.

2.4.2.3. Управление модулем ФСС-2.

Для отображения на экране монитора окна управления одним из модулей ФСС-2 следует щелкнуть левой кнопкой мыши на наименовании требуемого модуля ФСС-2 в левой части окна программы (рис.6). Окно управления модулем ФСС-2 будет иметь вид, показанный на рис.11.

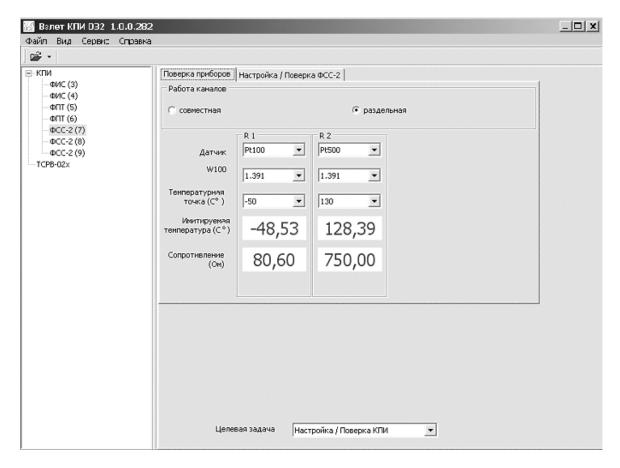


Рис. 11. Вид окна управления модулем ФСС-2.

Перед началом работы следует задать:

- режим управления выходами совместный или раздельный, установив флажок совместная или раздельная в области Работа каналов;
- тип датчика для параметра **Датчик**, значение номинальной статической характеристики для параметра **W100** и значение температуры для параметра **Температурная точка**.

При совместном управлении перечисленные настройки задаются в области **R1** одновременно для обоих каналов. При раздельном управлении – в областях **R1**, **R2** для каждого канала отдельно.

После окончания ввода установочных параметров в полях **Имитируемая температура** и **Сопротивление** начнется отображение значений параметров для сигналов, генерируемых на выходах модуля.

3. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Если при подаче напряжения питания отсутствует свечение индикатора включения прибора, необходимо проверить наличие напряжения сети 220 В 50 Гц.

Если индикация включения прибора пропала во время работы, необходимо отключить прибор от сети на время не менее 10 с, чтобы восстановился предохранитель по питанию. После этого снова попробовать включить прибор. В случае повторения явления прибор выключить и обратиться в сервисный центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.

В процессе эксплуатации комплекса контролируется наличие связи с модулями по интерфейсу RS-485. При отсутствии связи пропадает индикация наименования модуля (рис.6). В этом случае следует проверить соответствие скоростей обмена ПК и модулей. При необходимости обратиться в сервисный центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.

4. МЕТОДИКА ПОВЕРКИ

Методика поверки комплекса поверочного «ВЗЛЕТ КПИ» утверждена ГЦИ СИ ВНИИР. Межповерочный интервал – 2 года.

Комплекс поверочный «ВЗЛЕТ КПИ» проходит первичную поверку при выпуске из производства и после ремонта, периодические – в процессе эксплуатации.

4.1. Операции поверки

4.1.1. При проведении поверки КПИ выполняются операции, указанные в табл.3.

Таблица 3

Nº ⊓/⊓	Наименование операции	Номер пункта методики поверки
1	Внешний осмотр	4.7.1
2	Подтверждение соответствия программного обеспечения	4.7.2
3	Опробование	4.7.3
4	Определение метрологических характеристик	4.7.4

- 4.1.2. По согласованию с представителем органа Росстандарта поверка может проводиться по сокращенной программе. При этом погрешность измерения отдельных параметров может не определяться.
- 4.1.3. Допускается поверять КПИ не в полном диапазоне паспортных значений параметров, а в эксплуатационном диапазоне и только используемые модули.

4.2. Средства поверки

- 4.2.1. При проведении поверки применяется следующее поверочное оборудование:
 - 1) средства измерения и контроля:
 - частотомер Ч3-64 ДЛИ 2.721.006 ТУ;
 - вольтметр B7-54/3, диапазоны измерения 10⁻⁷-1000 B, 10⁻⁴-10⁹ Ом, кл.0,002;
 - магазин сопротивлений Р4831, класс 0,02.
 - 2) вспомогательные устройства:
 - IBM-совместимый персональный компьютер.
- 4.2.2. Допускается применение другого оборудования, приборов и устройств, характеристики которых не уступают характеристикам оборудования и приборов, приведенных в п.4.2.1. При отсутствии оборудования и приборов с характеристиками, не уступающими указанным, по согласованию с представителем Росстандарта выполняющего поверку, допускается применение оборудования и приборов с характеристиками, достаточными для получения достоверного результата поверки.

4.2.3. Все средства измерения и контроля должны быть поверены и иметь действующие свидетельства или отметки о поверке.

4.3. Требования к квалификации поверителей

К проведению измерений при поверке и обработке результатов измерений допускаются лица, аттестованные в качестве поверителя, изучившие эксплуатационную документацию на средства поверки, имеющие опыт поверки средств измерений, а также прошедшие инструктаж по технике безопасности в установленном порядке.

4.4. Требования безопасности

При проведении поверки должны быть соблюдены требования безопасности в соответствии с «Правилами технической эксплуатации электроустановок потребителей» и «Межотраслевыми правилами по охране труда (Правила безопасности) при эксплуатации электроустановок».

4.5. Условия проведения поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C 20 \pm 5;
- относительная влажность окружающего воздуха, % от 30 до 80;
- атмосферное давление, кПа от 84,0 до 106,7;
- напряжения питания переменного тока, В 220 ± 22;
- частота напряжения питания переменного тока, Γ ц 50 \pm 1.

4.6. Подготовка к проведению поверки

При подготовке к поверке необходимо:

- проверить выполнение условий п.п.4.2-4.5 настоящего документа;
- подготовить КПИ к работе согласно настоящему руководству по эксплуатации;
- подготовить средства поверки в соответствии и их эксплуатационной документацией.

4.7. Проведение поверки

4.7.1. Внешний осмотр

При внешнем осмотре устанавливается соответствие поверяемого КПИ следующим требованиям:

- комплектность и маркировка должны соответствовать технической документации;
- на составных частях КПИ не должно быть механических повреждений, препятствующих снятию отсчетов и проведению поверки.

4.7.2. Подтверждение соответствия программного обеспечения

Операция «Подтверждение соответствия программного обеспечения» включает:

- определение идентификационного наименования программного обеспечения;
- определение номера версии (идентификационного номера) программного обеспечения;
- определение цифрового идентификатора (контрольной суммы исполняемого кода) программного обеспечения.

Производится включение комплекса. После подачи питания встроенное ПО комплекса выполняет ряд самодиагностических проверок, в том числе проверку целостности конфигурационных данных и неизменности исполняемого кода, путем расчета и публикации контрольной суммы.

При этом будут отражаться следующие данные:

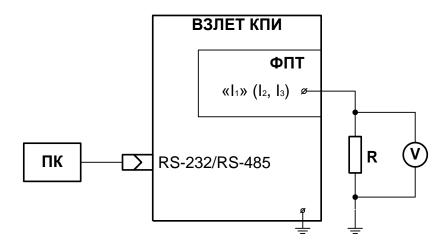
- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;
- цифровой идентификатор (контрольная сумма) ПО.

Результат подтверждения соответствия программного обеспечения считается положительным, если полученные идентификационные данные ПО СИ (идентификационное наименование, номер версии (идентификационный номер) и цифровой идентификатор) соответствуют идентификационным данным, указанным в разделе «Метрологические и технические характеристики» описания типа средства измерений.

4.7.3. Опробование

При опробовании определяют работоспособность КПИ и функционирование его составных частей в соответствии с документацией. Опробование допускается проводить в отсутствии поверителя.

В соответствии с руководством по эксплуатации выполнить подготовку к работе и проверку функционирования КПИ, для чего последовательно собрать схемы в соответствии с рис.12, 14, 16 для опробования модуля формирования сигнала постоянного тока (ФПТ), модуля формирования сигнала последовательности импульсов (ФИС), модуля формирования сигнала электрического сопротивления (ФСС-2) соответственно.

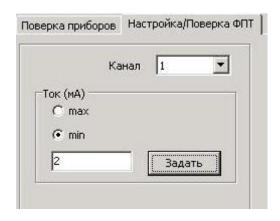

После включения питания и прогрева КПИ в течение 30 минут убедится по показаниям контрольно-измерительных приборов, что КПИ обеспечивает:

- формирование постоянного тока (модуль ФПТ);
- формирование импульсов (модуль ФИС);
- формирование электрического сопротивления нормированного значения (модуль ФСС-2).
- 4.7.4. Определение метрологических характеристик

Метрологические характеристики комплекса поверочного «ВЗЛЕТ КПИ» определяются как метрологические характеристики входящих модулей ФПТ, ФИС, ФСС-2.

4.7.4.1. Определение погрешности ФПТ при формировании сигнала постоянного тока.

Собрать схему в соответствии с рис.12. В качестве нагрузочного сопротивления использовать магазин сопротивлений R4831.



V – вольтметр; R –магазин сопротивлений.

Рис. 12. Схема подключений при поверке модуля формирователя сигналов постоянного тока.

Соединить стандартным кабелем КПИ и компьютер. Выставить на магазине сопротивлений значение сопротивления, равное 500 Ом. Включить питание комплекса и прогреть его во включенном состоянии не менее 30 мин. На компьютере запустить программу «Взлет КПИ 032», установить связь с КПИ (в соответствии с п.2.4.1) и выбрать целевую задачу Настройка / Поверка КПИ (рис.3). Активизировать закладку ФПТ, выбрав в левой части окна соответствующую строку. На экране ПК появится окно поверки модуля ФПТ (рис.13).

Рис.13. Фрагмент окна поверки модуля ФПТ.

Поверку проводить при формировании КПИ следующих значений постоянного тока: 0,3 мА; 2 мА; 10 мА; 18 мА (с допуском не более \pm 5 %). Установка значений производится с клавиатуры ПК

Действительное значение формируемого тока в і-той поверочной точке І_{оі} рассчитывается по формуле:

$$I_{oi} = U_{oi} / R, MA,$$

где U₀ – значение напряжения постоянного тока в i-той поверочной точке, измеренное вольтметром, B;

R – сопротивление магазина сопротивлений, используемого в качестве нагрузки, кОм.

Приведенная погрешность КПИ при формировании сигнала постоянного тока в диапазоне 0-5 мА в і-той поверочной точке офптлі определяется по формуле:

$$\sigma$$
ôïòïi = $\frac{I_{ei} - I_{oi}}{I_{max}} \cdot 100$, %,

где $I_{\text{иi}}$ — значение формируемого сигнала постоянного тока в і-той поверочной точке, считанное с КПИ, мА.

I_{oi} – действительное значение формируемого сигнала постоянного тока в і-той поверочной точке, мА.

I_{max} – максимальное значение диапазона формируемого сигнала постоянного тока, мА.

Относительная погрешность КПИ при формировании сигнала постоянного тока в диапазоне 5-20 мА в і-той поверочной точке $\sigma_{\Phi \Pi T o i}$ определяется по формуле:

$$\sigma_{\Phi\Pi Toi} = \frac{I_{\nu i} - I_{oi}}{I_{oi}} \cdot 100 , \%,$$

где $I_{\nu i}$ – значение формируемого сигнала постоянного тока в і-той поверочной точке, считанное с КПИ, мА.

 I_{oi} – действительное значение формируемого сигнала постоянного тока в і-той поверочной точке, мА.

Повторить вышеуказанные действия для всех выходов всех модулей **ФПТ**.

Результаты поверки считаются положительными, если по всем выходам:

- приведенные погрешности формирования сигнала постоянного тока в 1-ой и 2-ой поверочных точках не превышают значения ±0.15%;
- относительные погрешности формирования сигнала постоянного тока в 3-ей и 4-ой поверочных точках не превышают значения ±0.15%.
- 4.7.4.2. Определение погрешности ФИС при формировании импульсной последовательности

Собрать схему в соответствии с рис.14.

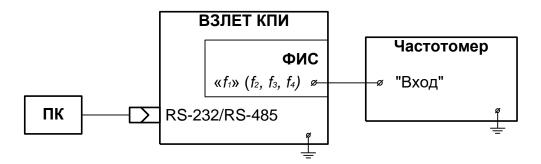


Рис. 14. Схема подключений при поверке модуля формирователя импульсных сигналов.

В левой части окна программы « Взлет КПИ 032» выбрать наименование **ФИС**. На экране ПК появится окно поверки модуля **ФИС** (рис.15).

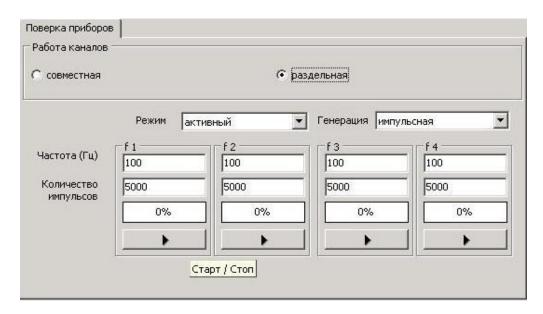


Рис.15. Фрагмент окна поверки модуля ФИС.

- Произвести поверку модуля ФИС при формировании импульсной последовательности с заданным количеством импульсов. Для этого на экране компьютера:
 - установить режим выходов **активный**, режим генерации **импуль- сная**;
 - в поле **Частота (Гц)** ввести частоту следования импульсов, равную 100 Гц;
 - в поле **Количество импульсов** выбрать число импульсов, равное 5000;
 - нажать кнопку Старт.

Повторить вышеуказанные действия для частот 1500 Гц и 3000 Гц.

Абсолютная погрешность формирования импульсной последовательности заданной длительности в і-той поверочной точке Δ ФИСІ определяется по формуле

$$\Delta$$
ФИСі = $N_{\text{иі}} - N_{\text{оі}}$, ИМП

где $N_{\text{иi}}$ – количество импульсов в последовательности, заданное в КПИ, в і-той поверочной точке, имп;

 N_{oi} – количество импульсов, измеренное частотомером, в і-той поверочной точке, имп.

Повторить вышеуказанные действия для всех выходов всех модулей **ФИС**.

Результаты поверки считаются положительными, если абсолютные погрешности формирования заданного количества импульсов во всех поверочных точках и по всем выходам не превышают значения ±1 импульс.

- Произвести поверку модуля ФИС при формировании непрерывной импульсной последовательности заданной частоты следования в частотном режиме. Для этого на экране компьютера:
 - установить режим выходов **активный**, режим генерации **частот ная**:
 - в поле **Частота (Гц)** ввести частоту следования импульсов, равную 30 Гц;
 - нажать кнопку Старт.

Повторить вышеуказанные действия для частот 300 Гц, 1500 Гц и 2600 Гц.

Относительная погрешность формирования сигнала заданной частоты в і-той поверочной точке офисі определяется по формуле

$$\sigma_{\Phi MCi} = \frac{f_{\text{Ni}} - f_{\text{oi}}}{f_{\text{oi}}} \cdot 100 \text{ , \%,}$$

где $f_{\text{иі}}$ — значение частоты, заданное в КПИ, в і-той поверочной точке, Гц;

 f_{oi} — значение частоты, измеренное частотомером, в і-той поверочной точке, Γ ц.

Результаты поверки считаются положительными, если относительные погрешности формирования сигнала заданной частоты во всех поверочных точках и по всем выходам не превышают значения $\pm 0.1\%$.

4.7.4.3. Определение погрешности ФСС-2 при формировании сигналов электрического сопротивления.

Собрать схему в соответствии с рис.16, для чего к разъему R_1 (R_2) на лицевой панели модуля кабелем B64.13-01.00 подключить вольтметр B7-54/3, включенный в 4-проводной режим измерения сопротивления.

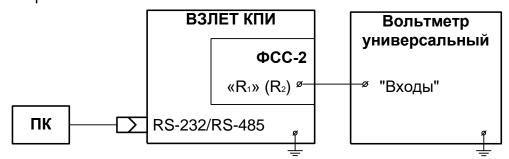


Рис. 16. Схема подключений при поверке модуля формирователя сигналов электрического сопротивления.

В левой части окна программы выбрать наименование ФСС-2. На экране ПК появится окно поверки модуля ФСС-2 (рис.17). Вы-

полнить поверку модуля ФСС-2. Для этого в окне **Датчик** выбрать характеристику **Pt100**, в окне **Температурная точка** – **30**.

Вышеуказанные действия повторить для точек 70, 130 °C и характеристик Pt100, Pt500, Pt1000.

Относительную погрешность формирования сопротивления в i-той поверочной точке офссі определить по формуле:

$$\sigma_{\Phi CCi} = \frac{R_{\nu i} - R_{oi}}{R_{oi}} \cdot 100 , \%,$$

где $R_{\text{иi}}$ — значение сопротивления, индицируемое в окне **Сопротивление (Ом)** вкладки **Настройка** / **Поверка ФСС-2**, в і-той поверочной точке, Ом;

 R_{oi} — значение сопротивления, измеренное вольтметром, в i-той поверочной точке, Om.

Повторить вышеуказанные действия для всех выходов всех модулей **ФСС-2**.

Рис.17. Фрагмент окна поверки модуля ФСС-2.

Результаты поверки считаются положительными, если относительные погрешности формирования сигнала электрического сопротивления во всех поверочных точках и по всем выходам не превышают значения \pm 0,02 %.

4.8. Оформление результатов поверки

- 4.8.1. При положительных результатах поверки делается отметка в паспорте КПИ или оформляется свидетельство о поверке, удостоверенные поверительным клеймом и подписью поверителя, а КПИ допускается к применению с нормированными значениями погрешностей.
- 4.8.2. При отрицательных результатах первичной поверки хотя бы одного из модулей КПИ возвращается в производство на доработку. После доработки КПИ подвергается повторной поверке.
- 4.8.3. При отрицательных результатах периодической поверки одного из модулей в паспорте или свидетельстве о поверке делается отмет-

ка о непригодности к эксплуатации данного модуля. При отрицательных результатах периодической поверки всех поверяемых модулей в паспорте делается отметка о непригодности к эксплуатации, а клеймо гасится.

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1. Введенный в эксплуатацию комплекс рекомендуется подвергать периодическому осмотру с целью контроля:
 - соблюдения условий эксплуатации;
 - отсутствия внешних повреждений;
 - надежности электрических соединений;
 - работоспособности.
- 5.2. Работоспособность комплекса характеризуется наличием индикации на дисплее ПК введенных и измеряемых параметров в полном объеме.
- 5.3. Комплекс по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится на специальных предприятиях либо на предприятии-изготовителе.
- 5.4. Отправка прибора для проведения ремонта, либо поверки должна производиться с паспортом прибора. В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

6. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

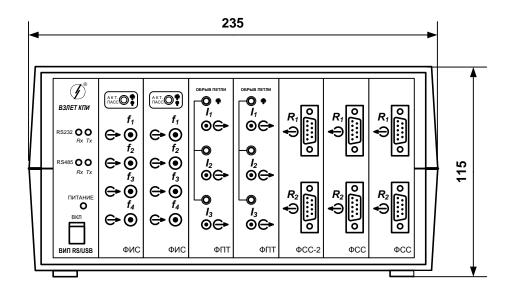
6.1. На лицевой панели комплекса содержится обозначение и наименование изделия, товарный знак предприятия-изготовителя, знак утверждения типа средства измерения, обозначения разъемов.

Заводской номер комплекса указан на шильдике, закрепленном на корпусе комплекса, а заводские номера модулей – на задних панелях модулей.

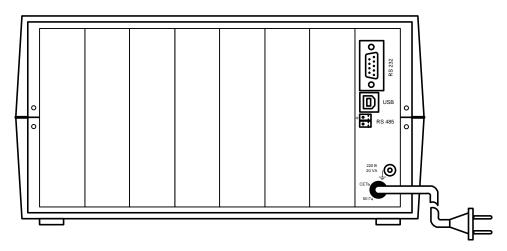
Маркировка тары комплекса производится в соответствии с ГОСТ 14192.

6.2. При поставке комплекса верхняя и нижняя части корпуса совместно пломбируются двумя навесными пломбами.

7. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРО-ВАНИЕ


- 7.1. Комплекс, укомплектованный в соответствии с заявкой, упаковывается в индивидуальную тару категории КУ-2 по ГОСТ 23170 (ящик из гофрированного картона). Туда же помещается эксплуатационная документация.
- 7.2. Хранение комплекса должно осуществляться в упаковке изготовителя в сухом отапливаемом помещении в соответствии с требованиями группы 1 по ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот, щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Комплекс не требует специального технического обслуживания при хранении.


- 7.3. Комплекс может перевозиться в транспортной заводской таре автомобильным, железнодорожным и авиационным транспортом (кроме негерметизированных отсеков) при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 30 до 50 °C;
 - влажность не превышает 95 % при температуре до 35 °C;
 - вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм или ускорением до 49 м/с 2 ;
 - удары со значением пикового ускорения до 98 м/c²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

ПРИЛОЖЕНИЕ А. Вид комплекса поверочного исполнения КПИВ-032

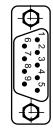
а) вид спереди

б) вид сзади

Габаритный размер по глубине 175 мм.

Масса не более 5,0 кг.

Рис.А.1. Комплекс поверочный «ВЗЛЕТ КПИ» исполнения КПИВ-032.


ПРИЛОЖЕНИЕ Б. Кабели присоединительные

Перечень кабелей присоединительных из комплекта поставки изделия приведен в табл.Б.1, схема распайки кабеля связи с ПК – на рис.Б.1.

Таблица Б.1

№ п/п	Децимальный номер	Назначение кабеля	Количество, Шт.
1	B64.15-02.00	Кабель КИ	8
2	B64.15-03.00	Кабель КТ	6
3	B64.15-07.00	Кабель ФСС	6
4		Кабель связи с ПК	1

Разъем DB9 на модуле ВИП RS/USB

Рис. Б.1. Схема распайки кабеля связи с ПК по RS-232.

Подключение комплексов поверочных исполнений КПИВ-03х к тепловычислителям «ВЗЛЕТ ТСРВ» различных исполнений указано в табл.Б.2.

Таблица Б.2

Подсоединение к КПИ				Подсоединение к тепловычислителю		
				Обозначение контакта		
					тепловычислителя (сигнала)	
Тип модуля /	Контакт	Маркировка	Маркировка			
маркировка		· - ·	сигнала, цвет	TCPB-02x	TCPB-03x	
разъема	разъема разъема		проводника			
Сигнал датчика температуры (сигнал сопротивления)						
ФСС / R _{1,2}	1	ФСС	+1	LEAD A		
	2		+U	PT	A	
	4		-U	PT B		
	5		-1	LEAD B		
Сигнал датчика давления (токовый сигнал)						
ФПТ / І _{1,2,3}	внутренний	белый	Р	-		
	внешний	KT	красный	COM	-	
Сигнал расходомера (импульсный сигнал)						
ФИС / f _{1,2,3,4}	ΦIΔC / f	внутренний	ICIA	белый	l+	PULSE
	внешний	КИ	красный	l-	GND	

B64.03-00.00-01

re_kpi032_033_doc2.5

