

комплекс измерительно-вычислительный ВЗЛЕТ

исполнение ИВК-ТЭР

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

В53.00-00.00-04 РЭ

Россия, Санкт-Петербург

Сделано в России

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015) органом по сертификации ООО «Тест-С.-Петербург», на соответствие СТО Газпром 9001-2018 органом по сертификации АС «Русский Регистр»

АО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ, 198097 E-mail: mail@vzljot.ru

www.vzljot.ru

Call-центр ☎8-800-333-888-7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

Настоящий документ распространяется комплекс измерительно-вычислительный «ВЗЛЕТ» исполнения ИВК-ТЭР и предназначен для ознакомления с его устройством и порядком эксплуатации.

В связи с постоянной работой по усовершенствованию прибора в комплексе ИВК возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности прибора.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

ВИП	 встроенный источник питания;
ЖКИ	 жидкокристаллический индикатор;
ИВК	 измерительно-вычислительный комплекс;
ИВП	 источник вторичного питания;
HC	- нештатная ситуация;
ПК	- персональный компьютер;
ПО	 программное обеспечение;
ΠΠΡ	- первичный преобразователь расхода;
ПУЭ	 правила устройства электроустановок.

* * *

 Комплекс измерительно-вычислительный «ВЗЛЕТ» зарегистрирован в Государственном реестре средств измерений РФ под № 21471-12.

Удостоверяющие документы размещены на сайте <u>www.vzljot.ru</u>

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- Изготовитель гарантирует соответствие техническим условиям комплексов измерительно-вычислительных «ВЗЛЕТ» исполнения ИВК-ТЭР в пределах гарантийного срока, указанного в паспорте на изделие, при соблюдении следующих условий:
 - Хранение, транспортирование, монтаж и эксплуатация изделия осуществляются в соответствии с требованиями эксплуатационной документации.
 - Монтаж и пусконаладочные работы проведены специализированной организацией, сотрудники которой прошли обучение на предприятии-изготовителе, и имеют сертификат на выполнение данного вида работ.
- II. В случае выхода оборудования из строя, гарантийный ремонт производится в головном или региональных сервисных центрах, авторизированных по работе с оборудованием торговой марки Взлет, при соблюдении условий эксплуатации и требований, указанных в эксплуатационной документации.
- III. Изготовитель не несет гарантийных обязательств в следующих случаях:
 - а) отсутствует паспорт на изделие
 - б) изделие имеет механические повреждения;
 - в) изделие хранилось, транспортировалось, монтировалось или эксплуатировалось с нарушением требований эксплуатационной документации на изделие;
 - г) отсутствует или повреждена пломба с поверительным клеймом;
 - д) изделие подвергалось разборке или доработке;
 - е) гарантия не распространяется на расходные материалы и детали, имеющие ограниченный срок службы.

Информация по сервисному обслуживанию представлена на сайте http: <u>www.vzljot.ru</u> в разделе Сервис.

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

- 1.1.1. Измерительно-вычислительный комплекс (ИВК) исполнения ИВК-ТЭР предназначен для сбора, обработки и хранения измерительной информации, поступающей от расходомера «ВЗЛЕТ ТЭР» или «ВЗЛЕТ ЭМ» исполнения «ПРОФИ М» по интерфейсу RS-485, а также индикации и передачи информации на внешние устройства.
- 1.1.2. ИВК обеспечивает:
 - настройку по интерфейсу RS-485 подключённого расходомера;
 - регистрацию и преобразование следующей измерительной информации, поступающей от подключенного к комплексу расходомера:
 - а) текущего значения расхода измеряемой среды для любого направления потока;
 - б) объёма измеряемой среды нарастающим итогом отдельно для прямого и обратного направления потока и их алгебраической суммы с учетом направления потока;
 - в) электрического сопротивления измеряемой среды.
 - индикацию результатов измерений на встроенном дисплее ИВК;
 - архивирование в энергонезависимой памяти результатов вычислений и параметров функционирования расходомера;
 - вывод информации по интерфейсу, универсальному/токовому выходу или по сети Ethernet (в зависимости от комплектации);
 - автоматический контроль и индикацию наличия неисправностей комплекса и нештатных состояний расходомера, а также запись в соответствующие журналы их вида и длительности;
 - возможность ввода настроечных параметров комплекса со встроенной клавиатуры;
 - защиту архивных и установочных данных от несанкционированного доступа.

1.2. Технические характеристики

- 1.2.1. Входы и выходы внешних связей:
 - универсальные выходы 1;
 - универсальные выходы дополнительные 8 (по заказу);
 - токовый выход 1 (по заказу);
 - интерфейс RS-232 1;
 - интерфейс RS-485 1;
 - интерфейс Ethernet 1 (по заказу).
- 1.2.2. ИВК обеспечивает хранение результатов работы в архивах:
 - часовом 1560 записей;
 - суточном 366 записей;
 - месячном 48 записей;
 - произвольном до 1000 записей;
 - журнале ошибок до 1000 записей;
 - журнале режимов до 500 записей;
 - журнале пользователя до 1000 записей.

Срок сохранности архивной и установочной информации в ИВК при отключении внешнего питания не менее 1 года.

- 1.2.3. Электропитание ИВК осуществляется стабилизированным напряжением постоянного тока в диапазоне от 18 до 25 В с уровнем пульсаций не более ± 1,0 %. Возможно электропитание от сети переменного тока напряжением (90-264) В частотой 50/60 Гц через источник вторичного питания.
 - Потребляемая мощность не более 4 Вт.
- 1.2.4. Эксплуатационные параметры:
 - средняя наработка на отказ 75 000 ч;
 - средний срок службы 12 лет.
- 1.2.5. ИВК соответствует требованиям ГОСТ Р 52931 по устойчивости:
 - к климатическим воздействиям группа В4 (диапазон температуры окружающего воздуха от 5 до 50 °C, относительная влажность до 80 % при температуре не более + 35 °C, без конденсации влаги);
 - к механическим воздействиям группе N2;
 - к атмосферному давлению группе Р2.

Степень защиты ИВК соответствует коду ІР54 по ГОСТ 14254.

1.2.6. Вид и массогабаритные характеристики комплекса приведены в Приложении А.

1.3. Метрологические характеристики

- 1.3.1. Комплекс не вносит погрешности при преобразовании и вычислении измерительной информации, поступающей от расходомера по интерфейсу RS-485, в выходной интерфейс RS-232/ RS-485.
- 1.3.2. Пределы допускаемой относительной погрешности преобразования поступающего по RS-интерфейсу значения расхода в частоту на универсальном выходе комплекса не более ± 0,5 %.
- 1.3.3. Пределы допускаемой приведенной погрешности преобразования б поступающего по RS-интерфейсу значения расхода в значение постоянного тока на токовом выходе комплекса, определяются по формуле:

$$\delta_{I} = \pm \left[0,15 + 0,06 \left(\frac{Q_{max}}{Q_{_{M3M}}} - 1 \right) \right], \%,$$
 (1)

где Q_{max} – значение расхода, соответствующее максимальному значению токового выходного сигнала, м³/ч;

Q_{изм} – преобразуемое значение расхода, м³/ч.

1.4. Состав

Комплект поставки изделия приведен в табл.1.

Таблица 1

Наименование	Кол.	Прим.
Комплекс измерительно-вычислительный «ВЗЛЕТ».		
Исполнение ИВК-ТЭР	1	
Источник вторичного питания = 24 В	1	По заказу
Паспорт	1	
Руководство по эксплуатации		Прим.

ПРИМЕЧАНИЕ:

Эксплуатационная документация и карты заказа на данное изделие и другую продукцию, выпускаемую фирмой «Взлет», размещены на сайте по адресу <u>www.vzljot.ru</u>.

Там же размещен пакет программ «Универсальный просмотрщик», включающий в свой состав инструментальную программу «Монитор Взлет ИВК» для работы с прибором по последовательным интерфейсам RS-232 или RS-485 и интерфейсу Ethernet.

1.5. Устройство и работа

1.5.1. Принцип работы

Принцип работы комплекса основан на преобразовании и обработке измерительной информации, поступающей по интерфейсу RS-485 от расходомера, накоплении и хранении результатов измерений в энергонезависимой памяти.

Канал измерения расхода (объема) состоит из расходомера, выдающего измерительную информацию через линию связи по интерфейсу RS-485, и гальванически развязанного канала преобразования интерфейса в электронном модуле блока ИВК.

Комплекс осуществляет вычисление среднеарифметического значения расхода по показаниям расходомера, и преобразование вычисленного значения расхода в значение объёма нарастающим итогом.

Настройка комплекса на объекте и считывание архивов производится по последовательному интерфейсу RS-232 (RS-485) или со встроенной клавиатуры. Значения регистрируемых и вычисленных параметров выводятся на жидкокристаллический индикатор (ЖКИ), расположенный на передней панели комплекса и через модуль интерфейса RS-232 (RS-485) передаются на персональный компьютер (ПК). ЖКИ обеспечивает вывод четырех строк алфавитно-цифровой информации при 20 символах в строке. Период обновления текущей информации на экране ЖКИ составляет 1 с.

При перерывах в электропитании комплекс фиксирует время отключения и включения питания. Вычисление параметров и пере-

дача по интерфейсу архивированных данных при отсутствии питания не производятся.

Структурная схема ИВК приведена на рис.1:

Рис.1. Структурная схема ИВК.

Основным элементом комплекса является модуль вычислителя, на котором расположен центральный контроллер, который через входной модуль RS-485 осуществляет информационный обмен с расходомером, расчет параметров, архивирование информации, управляет работой выходных модулей (комбинированного и сервисных), ЖКИ и обеспечивает работу клавиатуры.

Комбинированный модуль RS-232 / RS-485 / универсальный выход устанавливается в слот (разъем) модуля вычислителя и обеспечивает вывод информации на ПК или модем.

1.5.2. Уровни доступа

1.5.2.1. В ИВК предусмотрены три уровня доступа к установочным и калибровочным параметрам.

> Уровни доступа отличаются составом индицируемой на дисплее информации, возможностями по изменению установочных, калибровочных параметров ИВК, возможностями по изменению установочных параметров подключенного к ИВК расходомера, и обозначаются как режимы РАБОТА, СЕРВИС и НАСТРОЙКА.

Назначение режимов:

- НАСТРОЙКА режим настройки и поверки;
- СЕРВИС режим подготовки к эксплуатации;
- РАБОТА эксплуатационный режим (режим пользователя).

Наибольшими возможностями обладает режим НАСТРОЙКА. В этом режиме индицируются все параметры и возможна модификация всех установочных параметров. Наименьшими возможностями обладает режим РАБОТА.

Режимы работы задаются перемычками в виде комбинации наличия / отсутствия замыкания контактных пар J3 и J4 на субблоке вычислителя (см. рис.А.2 приложения А).

Соответствие комбинаций режимам работы приведено в табл.2, где «+» – наличие замыкания контактной пары перемычкой, а «-» – отсутствие замыкания.

Таблица 2

	Контакти	ная пара		
Наименование режима	J3	J4	Пазначение режима	
НАСТРОЙКА	+	-	Настройка и поверка	
СЕРВИС	-	+	Подготовка к эксплуатации	
РАБОТА	-	-	Эксплуатация	

1.5.2.2. Режим РАБОТА – режим эксплуатации на объекте. В режиме РАБОТА пользователь имеет возможность просматривать:

- а) измеряемые значения параметров: объемного расхода, объемов, накопленных при прямом и обратном направлении потока, а также их сумм с учетом и без учета знака;
- б) значение электрического сопротивления жидкости в первичном преобразователе расходомера;
- в) содержимое архивов и журналов;
- г) конфигурационные параметры: режим перехода приборных часов на зимнее / летнее время, типы установленных сервисных модулей, внешних связей и характеристики выходов;
- д) показания часов реального времени;
 - В режиме РАБОТА пользователь имеет возможность просматривать и изменять:
 - параметры связи по интерфейсам RS-232 (RS-485), Ethernet;
 - контрастность индикатора;
 - включать или выключать подсветку индикатора.
- 1.5.2.3. Режим СЕРВИС режим подготовки к эксплуатации на объекте.

В режиме СЕРВИС дополнительно (по отношению к режиму РАБОТА) возможно просматривать и изменять:

- параметры универсальных выходов;
- параметры выходов сервисных модулей;
- настройки архива;
- показания приборных часов;
- единицы измерения расхода (объема) [м³/ч; м³/с; л/мин; л/с (м³; л)];
- режим перехода приборных часов на зимнее / летнее время.
- 1.5.2.4. В режиме НАСТРОЙКА можно просматривать и модифицировать все параметры без исключения.

В этом режиме производится настройка прибора в процессе производства и юстировка (калибровка) при поверке.

В режиме НАСТРОЙКА возможна также очистка архивов и журналов (за исключением «Журнала режимов»).

1.5.2.5. Модификация установочных параметров, доступных в режимах СЕРВИС и РАБОТА, не влияет на метрологические характеристики прибора и может производиться при необходимости на объекте.

Параметры настройки и калибровки ИВК в режимах СЕРВИС и РАБОТА недоступны.

ПРИМЕЧАНИЕ. Режимы работы ИВК и расходомера полностью независимы. Т.е. если ИВК находится в режиме РАБОТА, а расходомер в режиме СЕРВИС то с клавиатуры ИВК можно модифицировать все, доступные в данном режиме, параметры расходомера.

1.5.3. Внешние связи

1.5.3.1. Последовательные интерфейсы

Последовательные интерфейсы RS-232, RS-485 и интерфейс Ethernet обеспечивают доступ к измерительным, расчетным и установочным параметрам, архивам с возможностью модификации установочных параметров, а также к управлению прибором. Последовательные интерфейсы поддерживают протокол ModBus (RTU ModBus и ASCII ModBus), принятый в качестве стандартного в приборах фирмы «B3ЛET».

Последовательный интерфейс RS-232 может использоваться для непосредственной связи с персональным компьютером:

- по кабелю (при длине линии связи до 15 м);
- по телефонной линии (с помощью телефонного модема);
- по радиоканалу (с помощью радиомодема).

Дальность связи по телефонной линии или радиоканалу определяется их характеристиками.

Последовательный интерфейс RS-485 обеспечивает связь по кабелю в группе из нескольких абонентов, одним из которых может быть ПК, при длине линии связи до 1200 м. Скорость обмена по интерфейсам RS-232 и RS-485 (от 2400 до 19200 Бод), а также параметры связи устанавливаются программно с помощью ПК, а также при помощи соответствующих пунктов меню ИВК (см. приложение Г).

ВНИМАНИЕ! Не допускается одновременное подключение и использование интерфейсов RS-232 и RS-485.

Интерфейс Ethernet используется для связи приборов в локальной сети, а также может использоваться для обмена данными через Интернет между приборами локальной сети и удаленным компьютером (компьютерами). Обмен осуществляется через шлюз локальной сети, имеющий собственный (глобальный) IP-адрес. При обмене данные упаковываются в стек протоколов Ethernet / IP / UDP / TFTP / ModBus. Поддерживается также протокол ARP

(Ethernet / ARP), который используется для определения МАСадреса узла по IP-адресу запроса.

1.5.3.2. Универсальные выходы

ИВК в зависимости от количества установленных сервисных модулей универсальных выходов может иметь от 1 до 9 гальванически развязанных универсальных выходов. Назначение выходов в различных режимах задается установками, приведенными в табл.3. Схема оконечного каскада универсальных выходов и описание работы приведены в приложении Б.

Режим работы выхода	Обозначение на дисплее	Назначение
	Q+	Расход при прямом (положительном) направлении потока
	Q–	Расход при обратном (отрицательном) направлении потока
частотныи	Q	Расход при любом направлении потока
	Нет	Выход закрыт
	V+	Объем при прямом (положительном) направлении потока
	V –	Объем при обратном (отрицательном) направлении потока
импульсный	V	Объем при любом направлении потока
	Нет	Выход закрыт
	Направление	Изменение направления потока жидкости в трубопроводе
	Q>Qнаиб	Превышение значения Q _{наиб}
	Ошибка	Любая ошибка, диагностируемая расходомером
	Реле дозатор	Сигнал дозатора
	Питание	Отсутствие сетевого питания
Логический	R вне диапаз.	Измеренное сопротивление выше заданного значения
	Пустая труба	Значение сопротивления выше установленного порогового
	пустая груба	значения для пустой трубы
	Q вне диапаз	Значение расхода вне заданного диапазона
	Q <qmin< td=""><td>Значение расхода меньше нижней уставки</td></qmin<>	Значение расхода меньше нижней уставки
	Q>Qmax	Значение расхода больше верхней уставки

Таблица 3. Назначения универсальных выходов комплекса

- В частотном режиме работы на открытый выход выдается импульсная последовательность типа «меандр» со скважностью 2, частота следования которой пропорциональна текущему значению расхода. Возможно масштабирование работы частотного выхода путем программной установки в соответствующем меню нижнего и верхнего пороговых значений расхода, соответствующих значениям частоты 0 и 3000 Гц на выходе.
- В импульсном режиме работы на открытый выход каждую секунду выдается пачка импульсов, количество которых с учетом веса импульса Ки (м³/имп) соответствует значению объема, измеренному за предыдущую секунду. Максимально возможная частота следования импульсов в пачке (типа «меандр» со скважностью 2) – 500 Гц, длительность выходных импульсов τ в диапазоне от 1 до 500 мс (типовая – 6 мс).

Для правильной работы универсальных выходов в частотном режиме в ИВК предусмотрена процедура автоматического расчета коэффициента **КР** (коэффициент выхода, размерность – имп/м³).

Расчет **КР** производится по заданным пользователем значениям **Qвп** и **Qнп** (верхний и нижний предельные расходы частотного выхода) и максимальному значению частоты **Fмакс.**

Если расчетное значение **КР** по каким-либо соображениям не устраивает пользователя, то он может установить другое меньшее значение. При этом значения **QB**п, **QH**п и **Fмакс** не меняются.

При работе универсального выхода в импульсном режиме производится установка коэффициента **Ки**. При этом вводятся значения **Qвп** (м³/сек), τ (мс) и, собственно **Ки** (м³/имп).

Для обоих режимов универсальных выходов задается активный уровень (Актив. ур.), т.е. уровень сигнала (Высокий или Низкий).

 В логическом режиме на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) – другой уровень сигнала.

Для логического режима задается параметр **Акт. уровень**. Назначение выхода в логическом режиме задается установками, приведенными в табл. 3:

- Направление уровень сигнала на выходе изменяется без задержки при изменении направления потока в трубопроводе;
- Q > Qнаиб уровень сигнала на выходе изменится, если измеренное значение расхода превысит значение Qнаиб для данного DN расходомера;
- Ошибка уровень сигнала на выходе изменится при возникновении любой нештатной ситуации, диагностируемой прибором;
- Реле дозатора сигнал об окончании дозирования;

ПРИМЕЧАНИЕ. Если в процессе дозирования произойдёт обрыв связи, сигнал об окончании дозирования не будет передан до восстановления связи ИВК-ТЭР с расходомером и окончания процесса дозирования. Т.е. если процесс дозирования прекратился до восстановления связи, то сигнал об этом с логического выхода ИВК поступит только после восстановления связи, что может привести к нежелательным результатам.

- Питание в активном режиме работы (независимо от выбранного активного уровня) при наличии напряжения питания расходомера на выходе формируется высокий уровень сигнала, при пропадании питания напряжение на выходе отсутствует;
- R вне диапаз уровень сигнала на выходе изменится, если измеренное значение сопротивления выше некоторого заданного значения;

ПРИМЕЧАНИЕ. Назначение выхода доступно только при подключенном расходомере «ВЗЛЕТ ТЭР».

- Пустая труба уровень сигнала на выходе изменится, если значение сопротивления выше установленного порогового значения для пустой трубы;
- **Q вне диапаз** уровень сигнала на выходе изменяется, если значение расхода вне заданного диапазона;
- **Q** < **Qмин** уровень сигнала на выходе изменится, если измеренное значение расхода станет меньше значение Q_{мин};
- **Q** > **Qмакс** уровень сигнала на выходе изменится, если измеренное значение расхода станет больше значение **Q**_{макс}.

ПРИМЕЧАНИЕ. Время опроса ИВК устанавливается в диапазоне от 30 секунд до 2 минут, что теоретически может означать задержку выдачи сигнала на логическом выходе до 2-х минут.

1.5.3.3. Токовый выход

Токовый выход может быть реализован с помощью сервисного модуля токового выхода, устанавливаемого по заказу. Назначение и параметры работы токового выхода на базе сервисного модуля устанавливаются программно.

Гальванически развязанный токовый выход сервисного модуля может работать в одном из трех диапазонов: (0-5) мА, (0-20) мА или (4-20) мА.

Номинальная статическая характеристика токового выхода:

$$Q_{v} = Q_{H\Pi} + (Q_{B\Pi} - Q_{H\Pi}) \frac{I_{Bbix} - I_{MUH}}{I_{Makc} - I_{MUH}},$$
(2)

где Q_v – измеренное значение расхода (м³/ч; м³/с; л/мин);

Q_{нп} – заданное значение нижнего порога по токовому выходу, соответствующее I_{мин}, м³/ч;

 $Q_{\mbox{\tiny B\Pi}}$ – заданное значение верхнего порога по токовому выходу, соответствующее $I_{\mbox{\tiny Makc}},\,m^3/\mbox{\footnotesize ч};$

I_{вых} – значение выходного токового сигнала, соответствующее измеренному значению расхода, мА;

I_{мин} – минимальное значение диапазона работы токового выхода (0 или 4), мА;

І_{макс} – максимальное значение диапазона работы токового выхода (5 или 20), мА.

Токовый выход в диапазонах работы (0-20) мА или (4-20) мА может работать на нагрузку сопротивлением до 1 кОм, в диапазоне (0-5) мА – до 2,5 кОм.

Допустимая длина кабеля связи по токовому выходу определяется сопротивлением линии связи и входным сопротивлением приемника токового сигнала. Сумма сопротивлений не должна превышать указанного сопротивления нагрузки.

1.5.4. Регистрация результатов работы

1.5.4.1. Результаты измерений и вычислений записываются во внутренние архивы: часовой, суточный, месячный, а также могут записываться в произвольный архив.

> Все архивы имеют одинаковую структуру. Глубина архивов составляет:

- часового 1560 записей;
- суточного 366 записей;
- месячного 48 записей;
- произвольного 1000 записей.

В перечень архивируемых параметров входят:

- V+ объем за интервал архивирования, измеренный при прямом направлении потока, м³;
- V- объем за интервал архивирования, измеренный при обратном направлении потока, м³;
- Qcp среднее значение расхода за период, л/мин;
- **Rизм** среднее измеренное за период значение сопротивления жидкости, кОм;

ПРИМЕЧАНИЕ. Архивирование параметра происходит только при подключении расходомера «ВЗЛЕТ ТЭР».

- Tcc время отсутствия связи с прибором;
- Тнер время простоя;
- Измеритель тип подключенного расходомера.

Также фиксируются пропажа питания и слово состояния, содержащее коды нештатных ситуаций и отказов в работе расходомера и ИВК, возникших в течение интервала архивирования.

Индикация значений архивируемых параметров сопровождается датой и временем сохранения архивной записи (день. мес. год; час: мин: сек).

Для каждого архива предусмотрена процедура поиска требуемой архивной записи.

1.5.4.2. Нештатные ситуации, ошибки и отказы, возникающие в процессе работы комплекса ИВК, фиксируются в журнале ошибок. Журнал может содержать до 1000 записей.

В журнале ошибок фиксируются:

- номер записи;
- наименование нештатной ситуации (ошибки, отказа);
- дата и время возникновения и снятия нештатной ситуации (ошибки, отказа).

1.5.4.3. Факт модификации значений установочных параметров фиксируется в журнале пользователя, который может содержать до 1000 записей.

В журнале фиксируется:

- номер записи;
- дата и время произведенной модификации;
- обозначение модифицируемого параметра;
- значение параметра до модификации;
- значение параметра после модификации.
- 1.5.4.4. Изменение режима работы прибора фиксируется в журнале режимов, который может содержать до 500 записей.
 - В журнале фиксируется:
 - номер записи;
 - наименование текущего режима;
 - дата и время установления режима.

1.5.5. Конструкция ИВК

1.5.5.1. Корпус ИВК состоит из трех литых из алюминиевого сплава частей (модулей): лицевой части – модуля вычислителя, средней части – модуля встроенного источника питания (ВИП) и основания – монтажного модуля (см. рис.А.1 приложения А).

> Модуль вычислителя содержит плату вычислителя. На лицевой панели корпуса модуля находятся жидкокристаллический индикатор и клавиатура. ЖКИ обеспечивает вывод четырех строк алфавитно-цифровой информации при 20 символах в строке.

На плате вычислителя дополнительно установлены:

- а) модуль внутреннего интерфейса RS-485 для связи с расходомером;
- б) комбинированный модуль, содержащий:
 - последовательный интерфейс RS-232;
 - последовательный интерфейс RS-485;
 - универсальный выход 0;
 - контактные пары J3 и J4 для задания режима работы комплекса;
- контактные пары J1 и J2 для задания режима работы оконечного каскада универсального выхода 0;
- разъемы для подключения кабелей связи с внешними устройствами.
- 1.5.5.2. Для установки по заказу одного или двух сервисных модулей внешних связей на плате вычислителя имеются два слота (разъема): №1 и №2.

Дополнительные модули имеют коммутационные элементы: разъемы для подключения кабелей связи с внешними устройства-

ми, а также контактные пары для установки режима работы оконечных каскадов универсальных выходов.

1.5.5.3. Возможные комбинации установки сервисных модулей внешних связей и нумерация выходов в зависимости от разъема (слота) установки модулей приведены в табл.4. Значком «х» обозначены установленные модули (комбинированный модуль установлен всегда).

Таблица 4

Наименование молупл	Nº	N⁰	Возможные комбинации						
Паименование модуля	слота	выхода	модулей						
Комбинированный модуль		0	×	×	×	×	×	×	×
Модуль	1	14	×	×	I	×	I	-	-
универсальных выходов	2	58	-	×	×	I	I	-	-
Модуль токового выхода	1	1	-	I	×	-	×	×	-
Модуль Ethernet	2	2	-	I	I	×	×	-	×

1.5.5.4. Модуль ВИП совместно с модулем вычислителя, соединяемые электрически многожильным шлейфом и конструктивно винтами со стороны модуля ВИП, составляют субблок вычислителя (см. рис.А.1 приложения А).

> Доступ к коммутационным элементам сервисных модулей для подключения кабелей связи осуществляется с обратной стороны субблока вычислителя (см. рис.А.2 приложения А). Обозначения коммутационных элементов на субблоке вычислителя приведены на рис.А.4.

1.5.5.5. В монтажном модуле находится плата модуля коммутации. На плату заводится внешнее питание от источника вторичного питания. Плата модуля коммутации позволяет подключить расходомер по интерфейсу RS-485. Опционально можно обеспечить питание не напрямую от ИВП, а через модуль коммутации.

В свою очередь субблок вычислителя соединяется винтами со стороны лицевой панели с монтажным модулем, образуя комплекс ИВК. На задней стенке монтажного модуля установлены кронштейны под DIN-рейку, обеспечивающие крепление комплекса на объекте эксплуатации.

На нижней плоскости корпуса монтажного модуля расположены гермовводы под металлорукава для ввода кабеля питания и кабелей связи, подключаемых к комплексу.

Вид источника вторичного питания приведен в приложении А.

1.6. Маркировка и пломбирование

- 1.6.1. Маркировка на лицевой панели ИВК содержит его обозначение и наименование, фирменный знак предприятия-изготовителя, знак утверждения типа средства измерения. Заводской номер указан на шильдике, закрепленном на корпусе ИВК.
- 1.6.2. После поверки ИВК пломбируется один из винтов, скрепляющий субблок вычислителя. Также обязательной пломбировке подлежит контактная пара J3 на субблоке вычислителя, закрывающая доступ к модификации калибровочных параметров.
- 1.6.3. После монтажа и проверки функционирования ИВК на объекте должны быть опломбированы контактные пары разрешения модификации функциональных параметров J4 на субблоке вычислителя.

Кроме того, для защиты от несанкционированного доступа при транспортировке, хранении или эксплуатации могут быть опломбированы два крепежных винта со стороны лицевой панели ИВК.

19

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения

- 2.1.1. Эксплуатация прибора должна производиться в условиях внешних воздействующих факторов, не превышающих допустимых значений, оговоренных в п.1.2.5.
- 2.1.2. Во избежание отказа приборов не допускается в качестве защитного заземления использовать систему заземления молниезащиты.

В соответствии с ПУЭ заземляющий проводник, соединяющий прибор с заземляющим устройством и выполняемый медным проводом с механической защитой, должен иметь сечение не менее 2,5 мм², без механической защиты – не менее 4 мм².

Заземляющий проводник подключается к клемме заземления ИВК (см. рис.А.1 приложения А).

- 2.1.3. Молниезащита объекта размещения прибора, выполненная в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO153-34.21.122-2003 (утвержденной Приказом Минэнерго России №280 от 30.06.2003 г.), предохраняет прибор от выхода из строя при наличии молниевых разрядов.
- 2.1.4. Требования к условиям эксплуатации и выбору места монтажа, приведенные в настоящей эксплуатационной документации, учитывают наиболее типичные внешние факторы, влияющие на работу расходомера.

На объекте эксплуатации могут существовать или возникнуть в процессе его эксплуатации внешние факторы, не поддающиеся предварительному прогнозу, оценке или проверке и которые производитель не мог учесть при разработке.

В случае проявления подобных факторов следует устранить их или найти иное место эксплуатации, где данные факторы отсутствуют или не оказывают влияния на работу изделия.

2.2. Подготовка к работе

- 2.2.1. Меры безопасности
- 2.2.1.1. К работе с ИВК допускается персонал, изучивший эксплуатационную документацию на изделие.
- 2.2.1.2. При подготовке изделия к использованию и в процессе эксплуатации должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок».

- 2.2.1.3. При проведении работ опасными факторами для человека являют-ся:
 - напряжение переменного тока с действующим значением до 264 В частотой 50/60 Гц (при использовании источника вторичного электропитания);
 - другие факторы, связанные с профилем и спецификой объекта, где производится монтаж.
- 2.3.1.4. В процессе работ по монтажу или ремонту ИВК запрещается:
 - производить подключения к ИВК, переключения режимов или замену электрорадиоэлементов при включенном питании;
 - использовать электроприборы и электроинструменты без подключения их корпусов к магистрали защитного заземления, а также использовать перечисленные устройства в неисправном состоянии.
 - 2.2.2. Ввод в эксплуатацию
- 2.2.2.1. Перед вводом в эксплуатацию необходимо провести проверку, и, при необходимости, настройку сетевого адреса и параметров связи подключаемого к ИВК расходомера (см. п.4.1.1 настоящего руководства).
- 2.2.2.2. При вводе в эксплуатацию должно быть проверено:
 - правильность подключения ИВК и взаимодействующего оборудования в соответствии со схемой подключения;
 - правильность заданных режимов работы выходов;
 - соответствие напряжения питания заданным техническим характеристикам.
- 2.2.2.3. Для исключения возможности изменения сервисных параметров после ввода ИВК в эксплуатацию может быть опломбирована контактная пара J4 на субблоке вычислителя (см. рис.А.2 приложения А).

Для защиты от несанкционированного доступа при эксплуатации могут быть опломбированы два крепежных винта со стороны лицевой панели ИВК.

21

3. УПРАВЛЕНИЕ КОМПЛЕКСОМ

Управление работой комплекса ИВК в различных режимах может осуществляться с клавиатуры с помощью системы меню и окон индикации разного уровня, отображаемых на дисплее, либо с помощью персонального компьютера по последовательным интерфейсам RS-232(RS-485) или интерфейсу Ethernet.

3.1. Управление с клавиатуры

- 3.1.1. Для управления ИВК с клавиатуры используется многоуровневая система меню (см. приложение Г), состоящая из основного меню, подменю, команд и параметров, наименования которых сгруппированы в списки. Основное меню (см. рис.2) имеет неизменный состав. Состав и структура подменю определяются режимом работы комплекса.
- 3.1.2. Клавиатура комплекса состоит из восемнадцати кнопок, назначение и обозначение которых приведены в приложении В.

Клавиатура обеспечивает возможность:

- перемещения по многоуровневой системе меню и окон;
- оперативного управления индикацией на ЖКИ;
- ввода установочной информации;
- просмотра архивов и журналов.
- 3.1.3. Индикация на дисплее комплекса состоит из наименования меню (окна), располагающегося неподвижно в первой строке ЖКИ, и наименований пунктов меню (параметров), которые могут смещаться вверх или вниз (см. рис.2).

Рис.2. Вид основного меню.

- 3.1.4. Для указания на выбранный пункт меню, параметр, разряд редактируемого числа или изменяемую часть строки служит курсор. Вид и положение курсора определяется возможностью изменения индицируемой в данной строке информации:
 - → возможен переход к меню / окну нижнего уровня;
 - возможно изменение значения параметра или команды (состояния), индицируемой в данной строке;

- изменение значения параметра невозможно (для некоторых параметров при этом возможен переход к укрупненной индикации значения);

- возможно изменение значения разряда числа, под которым расположен мигающий курсор.

- содержимое строки между знаками (треугольными скобками) может быть изменено.

3.1.5. Одновременно на дисплее может индицироваться не более 3-х строк пунктов меню (параметров) из списка. Поэтому в начале первой и последней строки на дисплее могут располагаться указатели направления прокрутки (см. рис.2) в виде треугольников 🔺 и 🔻, вершины которых направлены в стороны возможного перемещения по строкам (пунктам меню, параметрам).

Для выбора одного из пунктов меню (параметра) производится прокрутка списка вверх или вниз с помощью кнопок (1).

По первому нажатию кнопки 🕑 курсор смещается вниз на одну строку и устанавливается между указателями направления про-

крутки. При последующих нажатиях кнопки 🕑 начинается смещение списка пунктов меню (параметров) вверх при неподвижных курсоре и указателях направления прокрутки. При достижении последнего пункта меню (параметра) курсор перемещается на последнюю строку на место нижнего указателя прокрутки.

Порядок действий при переборе списка от конца к началу с помощью кнопки 1 аналогичный.

3.1.6. Для перехода к меню (окну) нижнего уровня, активизации пункта меню (параметра) необходимо требуемый пункт меню (параметр)

установить в одной строке с курсором → (►) и нажать кнопку ^Ш.

Выход из меню (окна) нижнего уровня без изменения значения параметра или возврат в окно (меню) верхнего уровня осуществ-

ляется по нажатию кнопки С, с вводом нового установленного

значения параметра – по нажатию кнопки 🥙.

3.1.7. В одном меню (окне) может последовательно индицироваться несколько однотипных по содержанию, но разных по принадлежности меню (окон). Принадлежность меню (окон) обозначается порядковым номером универсального выхода комплекса, записи в журнале в строке с номером записи или обозначением даты и времени сохранения архивной записи.

Возможность последовательного перебора однотипных меню (окон) указывается символом 🕈 слева от наименования меню (окна), содержащего порядковый номер. Для перехода в другое однотипное меню (окно) используются кнопки (), ().

3.1.8. В комплексе предусмотрена возможность индикации значений измеряемого расхода и некоторых настроечных параметров шрифтом большего размера (см. рис.3). Окно с укрупненной индикацией раскрывается после активизации наименования соответствующего параметра по нажатию кнопки.

Расход О ООО

Рис.3. Пример вывода на дисплей шрифта большого размера.

3.2. Ввод команд и значений установочных параметров

3.2.1. Для изменения значения установочного параметра или команды необходимо открыть соответствующее меню (окно), совместить

требуемую строку из списка с курсором вида ► и нажать кнопку Новое значение либо устанавливается поразрядно (числовое значение), либо выбирается из списка.

3.2.2. Поразрядная установка числового значения.

Если изменение значения параметра производится поразряд-

С...С, либо путем поразрядного изменения числа с помощью кнопок (▲, ●.

Ввод установленного числового значения параметра производится нажатием кнопки , отказ от ввода (возврат к прежнему значению) – нажатием кнопки .

3.2.3. Установка значения параметра, команды, обозначения, выбираемого из списка.

Если значение параметра (команды, обозначения) выбирается из списка, то после нажатия кнопки из курсор вида ► преобразу-

ется в треугольные скобки ◀ ▶ вокруг значения параметра (команды, обозначения), которые можно изменить.

Перебор значений осуществляется нажатием кнопок (♪), (↓) или (•), Э Ввод выбранного значения параметра (команды, обозначения) производится нажатием кнопки (С), отказ от ввода (возврат к прежнему значению) – нажатием кнопки (С).

4. НАСТРОЙКА КОМПЛЕКСА

4.1. Общие указания

4.1.1. По умолчанию с предприятия расходомеры выпускаются с сетевым адресом 1 и скоростью связи равной 19200 бод. Поэтому при правильном подключении по интерфейсу RS-485, комплекс автоматически подключается к расходомеру.

В случае несоответствия адреса в настройках комплекса, в меню Настройка / Вычислитель / Системные параметры / Настройки связи / Н-ка связи с ПИ необходимо указать правильный сетевой адрес расходомера и скорость связи. Выяснить параметры связи расходомера можно двумя способами:

- если расходомер с индикатором то воспользовавшись экранным меню;
- с помощью персонального компьютера при подключении расходомера к ПК через интерфейс.
- 4.1.2. При установленной связи с расходомером комплекс позволяет произвести полную настройку и конфигурацию подключенного расходомера с помощью программного обеспечения, поставляемого с ИВК. Порядок настройки расходомера приведен в его руководстве по эксплуатации.
- 4.1.3. Настройки ИВК производятся в меню Настройка / Вычислитель. В данном меню выбирается периодичность связи с расходомером (подменю Т опроса), в подменю Размерности назначаются размерности параметров (расход, объем, электрическое сопротивление жидкости), поступающих от расходомера по интерфейсу. В подменю Системные параметры / Установка часов производится коррекция (при необходимости) приборного времени, в подменю Системные параметры / Настройки связи устанавливаются параметры связи по интерфейсу с подключенным расходомером, с внешними устройствами, настройка интерфейса Ethernet или модема (при их наличии).

4.2. Коррекция приборной даты (времени)

Для коррекции приборной даты (времени) ИВК выбирается и активизируется меню Настройка / Вычислитель / Системные параметры / Установка часов / Дата (Время), затем кнопками , → курсор – последовательно устанавливается в позиции «день», «мес.», «год» («час.», «мин.», «сек.»). В каждой позиции кнопками , мес.», «год» («час.», «мин.», «сек.»). В каждой позиции кнопками , либо, модифицируется значение выбранного параметра. Ввод установленного значения параметра производится нажатием кнопки , отказ от ввода – нажатием кнопки .

ВНИМАНИЕ! В связи с отменой на территории России перехода на «зимнее» и «летнее» время по умолчанию в меню Установка часов / Время перевода для параметра Режим установлено значение нет перевода. Доступ в подменю Зимнее время и Летнее время закрыт.

4.3. Расчет коэффициентов КР и Ки универсальных выходов

4.3.1. Расчет коэффициента КР при работе универсальных выходов ИВК в частотном режиме производится в меню Настройки / Вычислитель / Настр. периферии / Универсальный выход / Настройка / Тип Частотный / Настройка.

Для расчета **КР** в строке **Парам.** предварительно задается назначение выхода (см. табл.3) и вводятся значения **Qвп**, **Qнп** и **Fмакс**. Затем кнопками , С строка меню **Расчет КР** ... устанавливается рядом с курсором ►и нажимается кнопка . После нажатия кнопки многоточие в конце строки **Расчет КР**... заключается в треугольные скобки **►**.

Для запуска процедуры расчета необходимо нажать кнопку а после появления вместо многоточия в треугольных скобках надписи Старт – кнопку . В результате вместо индикации Старт ► вновь появится индикация многоточия, а строкой выше – вычисленное значение КР.

Возможна модификация вычисленного значения **КР**, которая выполняется в соответствии с указаниями, приведенными в п.3.2.2.

4.3.2. При работе универсальных выходов ИВК в импульсном режиме, для расчета Ки в меню Настройка необходимо установить тип выхода Тип Импульсный и ввести значения параметров Qвп и τ. Процедура расчета Ки аналогична процедуре расчета КР.

Если расчетное значение **КР** (**Ки**) по каким-либо соображениям не устраивает пользователя, то он может установить для **КР** другое меньшее (а для **Ки** – большее) значение. При этом значения **QBR**, **QHR** и **Fmakc** (**QBR** и τ) не меняются.

4.3.3. При неправильно, с учетом частоты (длительности импульса) установленном значении коэффициента **КР** (**Ки**), в строке меню **Ошибки** появится сообщение о нештатной ситуации.

При работе универсальных выходов ИВК в частотном режиме сообщение о нештатной ситуации появится также при частоте следования импульсов больше заданной пользователем.

4.4. Просмотр записей в архивах и журналах

4.4.1. Для просмотра записей в архивах необходимо выбрать меню **Ар**хивы / Просмотр архивов и вид архива: Часовой, Суточный,

Месячный, Произвольный. Затем выбрать нужный интервал архивирования при помощи кнопок €, Э и с помощью кнопок ↑, • просмотреть заархивированные значения параметров.

Во всех архивах последняя строка окна содержит опцию **Поиск** записи. После активизации этой опции происходит переход в меню **ПОИСК АРХ. ЗАПИСИ** и курсор устанавливается в строке с индикацией интервала архивирования. Для поиска записи производится активизация строки и ввод требуемого интервала архивирования. Если введенный для поиска интервал архивирования имеется в архиве, то осуществляется переход к заданному (либо ближайшему) интервалу архивирования. Если введенный интерваливистивистивии отсутствует, то в последней строке индицируется надпись: Запись не найдена.

- 4.4.2. В меню **Архивы** / **Настройка архивов** в строке **Пер. пр.** можно выбрать период архивации произвольного архива 30 мин или 1 час, а также просмотреть статистику записей во все архивы.
- 4.4.3. Для просмотра записей в журналах необходимо выбрать меню Журналы и вид журнала: Журнал ошибок, Журнал режимов или Контрольный журнал. Порядок просмотра записей в журналах такой же, как при просмотре записей в архивах.

4.5. Настройка контрастности индикатора.

4.5.1. При необходимости можно уменьшить или увеличить контрастность индикатора. Для этого активизируется меню Настройки / Вычислитель / Системные параметры / Настройка индикатора / Диап. контр. Для уменьшения контрастности ввести значение низкий. Плавная регулировка контрастности возможна вводом числа в инстрастности возможна в инстрастности в инстрастности возможна инстрастности возможна в инстрастности возможна инстрастности и инстрастности и инстрастности инстр

диапазоне (50...120) в строке меню Контрастность =

4.5.2. Подсветка индикатора отключается вводом значения **ВЫКЛ.** В строку меню Подсветка **4ВКЛ.**►

4.6. Контроль отсутствия связи с расходомером

ИВК с периодичностью, равной **Т опроса**, обращается к расходомеру по интерфейсу RS-485. После нескольких попыток в случае отсутствия связи на экране появляется надпись «**HET CBЯЗИ С ИЗМЕРИТЕЛЕМ**». Убрать это информационное окно можно нажатием кнопки (выход в меню более высокого уровня).

5. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

5.1. Неисправности и нештатные ситуации, диагностируемые комплексом ИВК, разделяются на неисправности подключенного расходомера и неисправности собственно комплекса ИВК.

Неисправности расходомера индицируются в меню **Измерения** / **Состояние**, в окне укрупненной индикации измеряемого расхода и в архивах в виде строки символов (слова состояния).

Наличие неисправности или ошибки, отмечается на соответствующем знакоместе слова состояния символом <**x**>, отсутствие – символом < - >. Нумерация знакомест производится *справа налево*.

5.2. Перечень неисправностей и нештатных ситуаций, возникающих в расходомере и передаваемых в комплекс по интерфейсу от расходомера «ВЗЛЕТ ТЭР», приведен в табл.5.

Таблица 5

Код ошибки, отображение на дисплее	Содержание события
НС #1: Ток. выход	Ошибка токового выхода
НС #2: Зашкал сигнала	Уровень входного сигнала выше допустимого в несколь- ких циклах измерений
НС #3: Некорр.КР1	Некорректное значение КР по выходу 1
НС #4: Некорр.КР2	Некорректное значение КР по выходу 2
НС #5: Устойч. зашкал	Уровень входного сигнала выше допустимого в течение длительного времени
НС #6: Q > Qнаиб	Текущее значение расхода больше максимального
НС #7: Ошибка промера	Нет промера опорного сопротивления, аппаратная неис- правность
НС #8: Ошибка иниц	Рабочий режим без инициализации
НС #9: Пустая труба	Значение сопротивления выше заданного (пустая труба)
НС #10: R вне диапаз	Значение сопротивления вне заданного диапазона
НС #11: Q вне диапаз	Значение расхода вне заданного рабочего диапазона
HC #12: Q < Qмин	Текущее значение расхода меньше заданного значения рабочего диапазона
HC #13: Q > Qмакс	Текущее значение расхода больше заданного значения рабочего диапазона
НС #14: Зашкал усил.	Единовременное превышение входного сигнала
НС #15: Перегрев ТЭР	Температура внутри прибора выше допустимой нормы

Диагностируемые неисправности при подключенном расходомере ВЗЛЕТ ЭМ исполнения «ПРОФИ М» делятся на два типа:

 - Предупреждения – временная неисправность, вызванная нештатным режимом работы, прибор функционирует нормально – отображаются с приставкой «ПР.»;

- Ошибки и отказы – аппаратная неисправность прибора, необходимо обратиться в сервисный центр – отображаются с приставками «ОШ.» и «ОТК.».

Полный перечень неисправностей и нештатных ситуаций, возникающих в расходомере и передаваемых в комплекс по интерфейсу от расходомера ВЗЛЕТ ЭМ исполнения «ПРОФИ М», приведен в табл.6.

Таблица 6

Код ошибки, отображение на дисплее	Содержание события
ΠΡ. 1: Q > Qmax	Текущее значение расхода больше максимального
ПР. 2: КР вых. 1	Некорректное значение КР по выходу 1
ПР. 3: КР вых. 2	Некорректное значение КР по выходу 2
ПР. 4: Токовый выход	Ошибка токового выхода
ПР. 5: Расх. ниже гр.	Текущее значение расхода меньше заданного значения рабочего диапазона
ПР. 6: Расх. выше гр.	Текущее значение расхода больше заданного значения рабочего диапазона
ПР. 7: Пустая труба	Нет промера опорного сопротивления, аппаратная неис- правность
ПР. 8: Журн. переп.	Переполнение журнала прибора
ПР. 9: Индикатор	Индикатор неисправен
ОШ. 1: Нет опоры	Ошибка промера сигнала опоры
ОШ. 2: Без иниц.	Рабочий режим без инициализации
ОШ. 3: Вх. сигн.	Некорректный входной сигнал
ОТК. 1: Память	Отказ встроенной памяти прибора

Для определения вида неисправности расходомера или ошибки необходимо войти в меню **Измерения** / **Состояние**, установить

курсор в строке НС и нажать кнопку , после чего открывается окно, вид которого показан на рис.4.

РАСШИФРОВКА ОШИБОК ■ НС #9: Пустая труба

Рис.4. Вид окна индикации информации об ошибках.

- 5.3. Неисправности универсальных выходов ИВК индицируются в меню Настройки / Вычислитель / Настр. периферии / Универсальный выход / Настройка – в виде сообщений («F>Fмакс», «Имп.> Норма», «Нар. границ»).
- 5.4. НС «Пропажа питания ИВК», связанная с отсутствием напряжения питания комплекса, фиксируется в слове состояния архивов и в журнале ошибок.
- 5.5. При возникновении нештатной ситуации №7 расходомер необходимо отправить в ремонт.
- 5.6. При сбое связи с расходомером символ <x> появляется в крайнем левом знакоместе слова состояния. При активации строки НС в меню Измерения / Состояние на дисплее ИВК появляется сообщение Сбой связи с изм.
- 5.7. В случае возникновения неисправности или НС следует проверить:
 - наличие и соответствие нормам напряжения питания на входе расходомера;
 - наличие и соответствие нормам напряжения питания на входе расходомера, комплекса и источников вторичного питания;
 - надежность подсоединения цепей питания и связи;
 - наличие жидкости и ее движения в трубопроводе;
 - отсутствие скопления газа в месте установки расходомера;
 - корректность значений КР (Ки) и отсечек по расходу, установленных в расходомере и в ИВК; при необходимости изменить их значения;
 - настройки универсальных выходов ИВК.

В случае положительного результата перечисленных выше проверок необходимо выключить комплекс и расходомер и обратиться в сервисный центр или региональное представительство для определения возможности дальнейшей эксплуатации расходомера или комплекса.

31

6. МОНТАЖ ИВК И ВВОД В ЭКСПЛУАТАЦИЮ

6.1. Монтаж ИВК

- 6.1.1. Место установки ИВК и источника питания (при необходимости) выбирается из условия удобства работы с прибором. Монтаж возможен на вертикальной или горизонтальной поверхности. При выборе места размещения ИВК необходимо учитывать длину кабеля связи между расходомером и ИВК.
- 6.1.2. Установочные размеры ИВК и источника питания приведены в приложении А. Монтаж приборов ведется на DIN-рейку.
- 6.1.3 Источник вторичного питания, для комплекса ИВК, располагается в непосредственной близости от него.
- 6.1.4. Не допускается размещение ИВК и источника питания:
 - в помещении, где температура окружающего воздуха может выходить за пределы + 5...+ 50 °C, а влажность может быть выше 80 % при температуре более + 35 °C;
 - вблизи источников тепла, например, горячих трубопроводов.
- 6.1.5. Освещение ИВК необязательно, его дисплей имеет собственную подсветку.
- 6.1.6. Кабели связи со стороны ИВК пропускаются через его гермовводы. Перед подключением концы кабелей зачищаются от изоляции на длину 5 мм и облуживаются в соответствии с ГОСТ 23587. К ним подключаются ответные части разъемов, которые затем сочленяются с соответствующими разъемами сервисных модулей (см. рис.А.2 приложения А).

В качестве кабеля питания ИВК напряжением = 24 В может использоваться любой двухжильный кабель с сечением жил не менее 0,35 мм².

В качестве линии связи для универсальных выходов и выхода последовательного интерфейса может использоваться любой двух/четырехжильный кабель с сечением жил не менее 0,35 мм² и длиной – до 300 м для универсальных выходов и общей длиной до 1200 метров для последовательного интерфейса RS-485.

Для облегчения монтажа на субблок ИВК нанесена маркировка с указанием назначений коммутационных элементов (см. рис.А.4).

6.1.7. Кабели связи и сетевые кабели по возможности крепятся к стене. Для защиты от механических повреждений рекомендуется размещать их в металлической трубе или металлорукаве. Допускается в одной трубе (металлорукаве) размещать кабель связи и кабель питания.

6.2. Пусконаладочные работы

- 6.2.1. Пусконаладочные работы должны проводиться на функционирующем комплексе. На дисплее должен отображаться измеряемый расход (объём). Комплекс должен быть переведен в режим СЕРВИС (устанавливается перемычка на контактную пару J4 на субблоке вычислителя).
- 6.2.2. К комплексу подключается внешнее устройство (ПК, модем). В меню Настройка / Вычислитель / Системные параметры / Настройки связи устанавливаются необходимые параметры для согласования работы RS-выхода комплекса с входом подключаемого устройства. В меню О приборе / ИВК-ТЭР проверяется заводской номер комплекса и вводится заводской номер подключенного к комплексу расходомера.
- 6.2.3. Проверяются и, при необходимости, устанавливаются текущие дата и время (см. п.4.2).
- 6.2.4. Производятся необходимые настройки универсальных и токового (при его наличии) выходов.
- 6.2.5. Производится конфигурирование и настройка подключенного к комплексу расходомера. Комплекс переводится в режим РАБОТА (снимается перемычка с контактной пары J4).

6.3. Порядок работы

6.3.1. После включения питания комплекса производится его самоконтроль, на дисплее индицируется информация о комплексе и версия программного обеспечения. По завершению самоконтроля на дисплее отображается основное меню. Введенный в эксплуатацию комплекс работает непрерывно в автоматическом режиме.

Считывание текущих значений измеряемых параметров, а также содержимого архивов и журналов может осуществляться с дисплея комплекса. Работа пользователя с комплексом может осуществляться либо с клавиатуры и дисплея, либо с помощью персонального компьютера.

- 6.3.2. Перенос значений архивируемых параметров может осуществляться:
 - на персональный компьютер при непосредственном его подключении по интерфейсу RS-232 (RS-485) или по телефонной линии связи через модем, подключаемый по интерфейсу RS-232;
 - на архивный считыватель данных по интерфейсу RS-232.

6.4. Демонтаж

При демонтаже комплекса необходимо:

- отключить питание комплекса и подключённых к нему расходомера и внешних устройств;
- отсоединить подходящие к ИВК кабели;
- демонтировать комплекс.

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 7.1. ИВК рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности прибора;
 - соблюдения условий эксплуатации;
 - наличия напряжения питания;
 - отсутствия внешних повреждений составных частей прибора;
 - надежности электрических и механических соединений.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в две недели.

7.2. Несоблюдение условий эксплуатации ИВК в соответствии с п.1.2.5 может привести к его отказу.

Внешние повреждения также могут вызвать отказ. При появлении внешних повреждений изделия или кабеля питания и связи необходимо обратиться в сервисный центр или региональное представительство для определения возможности его дальнейшей эксплуатации.

- 7.3. Наличие напряжения питания комплекса определяется по наличию индикации, а работоспособность прибора по содержанию индикации на дисплее комплекса.
- 7.4. Измерительно-вычислительный комплекс «ВЗЛЕТ ИВК» по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится на специализированных предприятиях, либо предприятии-изготовителе.
- 7.5. Отправка прибора для проведения поверки, либо ремонта должна производиться с паспортом прибора. В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, способ и адрес обратной доставки, а также внешнее проявление неисправности.

8. ПОВЕРКА

Комплексы проходят первичную поверку при выпуске из производства и после ремонта, периодические – при эксплуатации. Документ на поверку В53.00-00.00И1.

Межповерочный интервал – 4 года.

9. УПАКОВКА, ХРАНЕНИЕ И ТРАНСПОРТИРО-ВАНИЕ

- 9.1. Комплекс ИВК-ТЭР, укомплектованный в соответствии с заявкой, упаковывается в индивидуальную тару категории КУ-2 по ГОСТ 23170 (коробку из гофрированного картона или деревянный ящик). Туда же помещается эксплуатационная документация.
- 9.2. Хранение должно осуществляться в упаковке изготовителя в соответствии с требованиями группы 1 по ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Прибор не требует специального технического обслуживания при хранении.

- 9.3. ИВК может транспортироваться автомобильным, речным, железнодорожным и авиационным (кроме негерметизированных отсеков) транспортом при соблюдении следующих условий:
 - транспортировка осуществляется в заводской таре;
 - отсутствует прямое воздействие влаги;
 - температура не выходит за пределы от минус 25 до 55 °C;
 - влажность не превышает 98 % при температуре до 35 °C;
 - вибрация в диапазоне от 10 до 500 Гц с амплитудой до 0,35 мм и ускорением до 49 м/с²;
 - удары со значением пикового ускорения до 98 м/с²;
 - уложенные в транспорте изделия закреплены во избежание падения и соударений.

ПРИЛОЖЕНИЕ А. Общий вид ИВК-ТЭР

а) вид спереди

б) вид снизу

* - справочный размер

1 — индикатор; 2 — клавиатура; 3 — клемма заземления; 4 — модуль вычислителя; 5 — модуль ВИП; 6 — монтажный модуль; 7 — гермовводы под присоединение металлорукавов кабелей питания и связи; 8 — кронштейны для установки на DINрейку; 9 — субблок вычислителя.

Рис.А.1. Общий вид ИВК-ТЭР.

- А окно для размещения коммутационных элементов комбинированного модуля «RS-232 / RS-485 / универсальный выход 0»;
- Б1, В1 окна для размещения коммутационных элементов сервисного модуля, установленного в слот 1;
- Б2, В2 окна для размещения коммутационных элементов сервисного модуля, установленного в слот 2;
- Г окно для размещения коммутационных элементов модуля внутреннего интерфейса RS-485 для связи с расходомером;
- контактные пары для установки режима работы универсальных выходов 5-8;
- 2 контактные пары для установки режима работы универсальных выходов 1-4;
- 3 разъем выходного интерфейса RS-485;
- 4 контактные пары J4, J3 соответственно для установки режимов работы ИВК;
- 5 разъем универсального выхода 0;
- 6 контактные пары J2, J1 для установки режима работы универсального выхода 0;
- 7 разъем выходного интерфейса RS-232;
- 8 разъем универсальных выходов 1-4;
- 9 разъем универсальных выходов 5-8;
- 10 разъем внутреннего интерфейса RS-485 для связи с расходомером;

11 – клемма подключения проводника, соединяющего корпуса модуля ВИП и монтажного модуля;

- 12 разъем для подключения кабеля питания =24 В;
- 13 колодка предохранителя 1 А в цепи =24 В.

Рис.А.2. Вид сзади субблока вычислителя с двумя сервисными модулями (универсальных выходов 1-4 и 5-8).

Рис.А.3. Коммутационные элементы комбинированного модуля.

Таблица А.1. Обозначение контактных элементов и сигналов комбини-
рованного модуля.

Наименование выхода	Обозначение контактного элемента	Обозначение сигнала, назначение контактного элемента
	1	RXD
	2	RTS
RS-232	3	TXD
	4	CTS
	7	GND
	-	TSOUT+
Универсальный	-	TSOUT-
выход 0	J1	Контактные пары установки режима работы
	J2	универсального выхода 0
	J3	Контактные пары установки режима работы
-	J4	прибора
	-	GND
RS-485	-	A / Data-
	-	B / Data+

Таблица А.2. Обозначения коммутационных элементов модулей внешних связей при маркировке на корпусе субблока

		Выходные	е сигналы	Контактные пары		
Номер выхода	Номер слота, куда установ- лен модуль	обозначение окна на рис.А.2	обозначение сигналов	обозначение окна на рис.А.2	обозначе- ние кон- тактных пар	
Универсальный 0 (комб. модуль)	-	А	TSOUT +/-	А	J1, J2	
Универсальный 1		E1	TSOUT1 +/-		J1, J2	
Универсальный 2	1		TSOUT2 +/-	B1	J3, J4	
Универсальный 3	I	ы	TSOUT3 +/-		J5, J6	
Универсальный 4			TSOUT4 +/-		J7, J8	
Универсальный 5			TSOUT5 +/-		J9, J10	
Универсальный 6	2	E2	TSOUT6 +/-	P 2	J11, J12	
Универсальный 7	Z	DZ	TSOUT7 +/-	DZ	J13, J14	
Универсальный 8			TSOUT8 +/-		J15, J16	
Токовый 1	1	Б1	I / GND	B1	-	
Токовый 2	2	Б2	I/GND	B2	-	

Пример маркировки коммутационных элементов модулей на корпусе субблока: - комбинированного;

- универсальных выходов;
- токового;

- внутреннего RS-485 (связи с расходомером).

Подключение к сети Ethernet при установленном разъеме в окно Б1.

١×

Рис.А.4. Обозначения коммутационных элементов на субблоке вычислителя ТЭР, расположенные на тыльной стороне крышки прибора.

ХТ1 – разъем для подключения внешнего питания 24В; ХТ2 – разъем питания ИВК-ТЭР; ХТ3 – разъем внутреннего интерфейса ИВК-ТЭР; ХТ4, ХТ6 – параллельные разъемы для запитывания внешнего расходомера напряжением питания 24В; ХТ5, ХТ7 – параллельные разъемы для внешнего расходомера к ИВК-ТЭР при помощи интерфейса RS-485.

Рис.А.5. Вид монтажного модуля.

* - справочный размер

1 – винты контактной колодки выходного напряжения =24 В; 2 – светодиодный индикатор включения источника вторичного питания; 3 – винт подстройки выходного напряжения; 4 – винты контактной колодки подключения напряжения питания ~220 В 50 Гц (L – линия, N – нейтраль); 5 – серьга для освобождения защелки; 6 – защелка для крепления на DIN-рейке.

ПРИЛОЖЕНИЕ Б. Универсальные выходы ИВК-ТЭР

Оконечные каскады универсальных выходов ИВК (рис. Б.1) могут работать как при питании от внутреннего развязанного источника питания (активный режим), так и от внешнего источника питания (пассивный режим). Типовая поставка – пассивный режим работы оконечного каскада.

Рис.Б.1. Схема оконечного каскада универсальных выходов комплекса.

В активном режиме и заданном значении параметра **Актив. ур**. **Высокий**> напряжение на выходе в логическом режиме и амплитуда импульса в импульсном режиме может быть от 2,4 до 5,0 В. При отсутствии импульса и при уровне **Низкий**> в логическом режиме – напряжение на выходе не более 0,4 В. Работа выхода в активном режиме допускается на нагрузку с сопротивлением не менее 1 кОм.

В пассивном режиме допускается питание от внешнего источника напряжением постоянного тока от 5 до 10 В, допустимое значение коммутируемого тока нагрузки не более 10 мА. Допускается питание выходного каскада от внешнего источника напряжением до 24 В постоянного тока, при этом амплитуда выходных импульсов будет ограничена напряжением срабатывания супрессора на уровне 15 В.

Подключение оконечного каскада к внутреннему источнику питания + 5 В осуществляется с помощью перемычек, замыкающих контактные пары J1-J8 на соответствующем дополнительном модуле универсальных выходов.

Длина линии связи до 300 м.

ПРИЛОЖЕНИЕ В. Клавиатура комплекса ИВК-ТЭР

Графическое обозначение	Назначение кнопки
↑	 При выборе пункта меню, параметра архивной записи – перемещение по списку вверх. При установке символьной величины – перемещение по списку возможных символьных значений вверх. При установке значения чисповой величины – увеличение значения
	разряда. 1. При выборе пункта меню, параметра архивной записи – перемеще-
◄	 при высоре пункта меню, параметра архивной записи – перемеще- ние по списку вниз. При установке символьной величины – перемещение по списку возможных символьных значений вниз. При установке значения числовой величины – уменьшение значе- ния разряда.
€	 При установке числовых величин – перемещение курсора по раз- рядам числа влево. При просмотре журнальных или архивных записей – уменьшение номера записи. При переборе однотипных меню (окон) – переход к предыдущему меню (окну).
€	 При установке числовых величин – перемещение курсора на раз- ряд числа вправо. При просмотре журнальных или архивных записей – увеличение номера записи. При переборе однотипных меню (окон) – переход к последующему меню (окну).
Ľ	 Переход в выбранное меню/окно нижнего уровня. Выполнение операции, ввод установленного значения параметра.
	 Выход в меню/окно более высокого уровня. Отказ от выполнения операции, отказ от ввода измененного значе- ния параметра и выход в меню/окно более высокого уровня.
0_9	 Набор числового значения установочного параметра. В режиме навигации по меню – горячие клавиши.
$\mathbf{\cdot}$	Перевод курсора в разряд дробной части числа.
\Box	Знак отрицательного числового значения параметра.

Таблица В.1. Назначение и обозначение кнопок клавиатуры

43

ПРИЛОЖЕНИЕ Г. Система меню комплекса

Система меню и окон, а также связей между ними приведена на рис. Г.1-Г.7. Перечень обозначений, используемых в рисунках, приведен в табл.Г.1.

Таблица Г.1

Вид элемента	Назначение
НАСТРОЙКИ	Наименование меню.
Объем	Наименование пункта меню, команды или параметра.
XXXX	Нередактируемое числовое значение параметра, либо ре- дактирование производится в другом окне.
	Поразрядно редактируемое числовое значения параметра.
наименование	Значение параметра, устанавливаемое прибором. Надпись отображает смысловую суть параметра.
 	Значение параметра задается посредством его выбора из списка. Надпись в угловых скобках отображает смысловую суть или возможные значения параметра.
Э	Окно или опция меню (подменю) индицируется только в режиме НАСТРОЙКА.
CH	Окно или опция меню (подменю) индицируется в режимах СЕРВИС и НАСТРОЙКА.
Значок С с обозна- чением режима от- сутствует	Окно или опция меню (подменю) индицируется во всех ре- жимах: РАБОТА, СЕРВИС, НАСТРОЙКА.
н	Модификация параметра (параметров) возможна в режиме НАСТРОЙКА.
СН	Модификация параметра (параметров) возможна в режимах СЕРВИС и НАСТРОЙКА.
Значок с обо- значением режима отсутствует	Модификация параметра (параметров) возможна во всех режимах: РАБОТА, СЕРВИС, НАСТРОЙКА.
И	Окно укрупненной индикации
ИВ	Окно укрупненной индикации и ввода значения параметра.
*Π	Опция меню (подменю) индицируется только при подключении расходомера ВЗЛЕТ ЭМ исполнения «ПРОФИ М».
* T	Опция меню (подменю) индицируется только при подключении расходомера ВЗЛЕТ ТЭР.
	Переход между окнами меню.
<⇒> Рис. Г.1	Указатель перехода на другой рисунок.

Рис.Г.1. Основное меню и меню верхнего уровня.

Рис.Г.2. Меню «ИЗМЕРЕНИЯ» и меню (окна) нижнего уровня.

Рис.Г.3. Меню «Н-КА ВЫЧИСЛИТЕЛЯ» и меню нижнего уровня.

* - индикация отсутствует, если для параметра Режим задано значение Нет перевода.

Рис.Г.4. Меню «СИСТЕМНЫЕ ПАРАМЕТРЫ» и меню (окна) нижнего уровня.

47

Рис.Г.5. Меню «НАСТРОЙКИ ПЕРИФЕРИИ» и меню (окна) нижнего уровня.

Рис.Г.6. Меню «ЖУРНАЛЫ».

Рис.Г.7. Меню «АРХИВЫ».

ШКСД.408844.018

re_ivk-ter_doc2.5

