

расходомер-счетчик электромагнитный ВЗЛЕТ ЭР

МОДИФИКАЦИЯ ЛАЙТ М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Часть II ШКСД.407212.006 РЭ

Россия, Санкт-Петербург

Сделано в России

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015) органом по сертификации ООО «Тест-С.-Петербург», на соответствие СТО Газпром 9001-2018 органом по сертификации АС «Русский Регистр»

АО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ, 198097

E-mail: mail@vzljot.ru

www.vzljot.ru

. . .

Call-центр 🕿 8 - 8 0 0 - 3 3 3 - 8 8 8 - 7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ	5
1.1. Сервисное программное обеспечение	5
1.2. Порядок подключения к ПК	6
1.3. Уровни доступа к установочным параметрам расходомера	7
2. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ЛАЙТ М RTC (ПОЛЬЗОВАТЕЛЬСКИЙ) ВЕРСИЯ 2.X.VPR»	9
2.1. Программное подключение ПК к расходомеру	9
2.2. Чтение и запись установочных параметров	11
2.3. Настройка параметров измерения расхода	12
2.4. Настройка параметров универсальных выходов	14
2.5. Быстрая настройка универсального выхода №1	19
2.6. Настройка параметров связи с прибором	20
2.7. Настройка параметров индикатора	21
2.8 Установка даты и времени	22
2.9. Отображение измеряемых параметров	23
2.10. Отображение метрологических параметров	24
2.11. Отображение диагностируемых ошибок и НС	25
2.12. Изменение уровня доступа к настройкам	27
3. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ВЗЛЕТ ЭР ЛАЙТ М 41.85.15.55, ВЕРСИЯ 22.3»	29
3.1. Подготовка к работе	29
3.2. Программное подключение ПК к расходомеру	29
3.3. Настройка параметров измерения расхода	30
3.4. Настройка параметров универсальных выходов	31
3.5. Отображение диагностируемых ошибок и НС	32
4. КОМПЛЕКС СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ	34
4.1. Дискреционный принцип контроля доступа	34
4.2. Взаимодействие пользователя с КСЗ	35
4.3. Сохранение и восстановление конфигурации расходомера	36
4.4. Журнал действий пользователя (функция регистрации)	40
ПРИЛОЖЕНИЕ А. Типовые значения установочных параметров	41

Настоящий документ распространяется на расходомер-счетчик электромагнитный «ВЗЛЕТ ЭР» модификации «Лайт М» и предназначен для ознакомления с приборным сервисным программным обеспечением и порядком работы с ним.

В связи с проводимыми конструктивными доработками и усовершенствованиями в расходомере возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности изделия.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

- DN диаметр номинальный;
- КСЗ комплекс средств защиты;
 - НС нештатная ситуация;
 - ПК персональный компьютер;
 - ПО программное обеспечение;
- ЭМР электромагнитный расходомер.

1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ

1.1. Сервисное программное обеспечение

Управление работой расходомера возможно с помощью персонального компьютера, на котором установлена программа «Универсальный просмотрщик», содержащая пакет мониторов, в том числе:

- Монитор Лайт М, версия 1.07, рабочий файл на ПК Лайт М (пользовательский).vpr;
- Монитор "ВЗЛЕТ ЭР Лайт М 41.85.15.55", версия 22.3, рабочий файл на ПК Лайт М+ (пользовательский).vpr;
- Монитор Лайт М (RTC), версия 1.04, рабочий файл на ПК Лайт М *RTC (пользовательский).vpr*;
- Монитор Лайт М (RTC), версия 2.3 (версия 2.4), рабочий файл на ПК Лайт М RTC (пользовательский) версия 2.X.vpr.

Программа «Универсальный просмотрщик» доступна для загрузки с сайта **www.vzljot.ru**.

Перечисленные программы идентичны по назначению, порядку работы с ними и имеют незначительные отличия по общему набору функций и графическому интерфейсу.

ПРИМЕЧАНИЯ:

- 1. В случае возникновения затруднений с определением требуемой версии монитора для работы с расходомером следует обратиться за консультацией в Отдел технического сопровождения АО «Взлет».
- 2. В процессе установки на ПК программы «Универсальный просмотрщик» следует также согласиться с установкой драйверов последовательного интерфейса USB.

1.2. Порядок подключения к ПК

Подключение расходомера к персональному компьютеру выполняется по последовательному интерфейсу USB через один из адаптеров: «ВЗЛЕТ AC USB-ЭР», либо «ВЗЛЕТ AC USB-RS232\485» (рис.1).

Концы сигнальных кабелей присоединяются к соответствующему разъему ПК, разъемам адаптера «ВЗЛЕТ АС USB-ЭР» (адаптера «ВЗЛЕТ USB-RS232\485») и к разъему расходомера (рис.2).

б) подключение адаптера «ВЗЛЕТ USB-RS232\485»

Рис.2. Схемы подключения адаптеров к ПК и к расходомеру.

При выполнении подключений следует руководствоваться эксплуатационной документацией на адаптеры и на расходомер.

ПРИМЕЧАНИЯ:

- 1. Использование интерфейса RS-485 для управления расходомером возможно в исполнениях ЭРСВ-ХХ1Л/Ф (кроме расходомеров с модулем обработки ШКСД.408843.005).
- 2. В расходомере исполнений ЭРСВ-4Х8Ф использование интерфейса RS-485 возможно только для чтения архивов.

1.3. Уровни доступа к установочным параметрам расходомера

1.3.1. Возможности пользователя при управлении расходомером определяются установленным в нем одними трех уровней доступа к установочным параметрам. Уровни доступа обозначаются как режимы НАСТРОЙКА, СЕРВИС и РАБОТА.

Назначение каждого режима:

- НАСТРОЙКА режим настройки и поверки;
- СЕРВИС режим подготовки к эксплуатации;
- РАБОТА эксплуатационный режим (режим пользователя).
- 1.3.2. В зависимости от исполнений расходомера режимы задаются либо комбинацией наличия/отсутствия замыкания с помощью перемычек двух контактных пар, либо нажатием на одну из кнопок включения режима (см. часть I настоящего руководства).

Соответствие комбинаций замыкания посредством перемычек (нажатия кнопок) устанавливаемым режимам приведено в табл.1, где «+» – наличие замыкания контактной пары, либо нажатие соответствующей кнопки, «-» – отсутствие замыкания контактной пары.

Таблица 1

Наименование	Контактная пара			ba	Кнопки включ	ения режимов	Назначение режима
режима	J1 [*]	J2 [*]	J3	J4	<НАСТРОЙКА>	<СЕРВИС>	Пазначение режима
НАСТРОЙКА	+	_	_	_	+		Режим настройки и поверки
СЕРВИС	_	+	+	_		+	Режим подготовки к эксплуатации
РАБОТА	_	_	+	+			Эксплуатационный режим

* - для исполнения расходомера с модулем обработки ШКСД.408843.005

ПРИМЕЧАНИЕ. В исполнениях расходомера, где предусмотрены кнопки включения режимов НАСТРОЙКА и СЕРВИС, переход в режим РАБОТА происходит после отключения и последующего включения электропитания, либо по истечении **16 часов**, если только не была снова нажата кнопка включения режима.

- 1.3.3. В режиме НАСТРОЙКА доступны все установочные параметры прибора. В этом режиме производится настройка прибора в процессе его изготовления и юстировка (калибровка) при поверке.
- 1.3.4. В режиме СЕРВИС возможна модификация:
 - отсечек по измерению расхода;
 - параметров работы фильтра и автомата установки расхода;
 - параметров и режимов работы универсальных выходов;
 - параметров индикации.

При необходимости доступ в режиме СЕРВИС к настройкам отсечек по измерению расхода и режимов работы универсальных выходов может быть изменен на доступ в режиме НАСТРОЙКА (см. подраздел 2.12 настоящего документа).

- 1.3.5. В режиме РАБОТА недоступны никакие настройки, кроме настроек связи в расходомерах с модулем обработки ШКСД.408843.005.
- 1.3.6. Модификация установочных параметров, доступных в режиме РАБОТА и СЕРВИС, не влияет на метрологические характеристики прибора и может производиться при необходимости на объекте. Параметры калибровки в режимах РАБОТА и СЕРВИС недоступны.
- 1.3.7. Расходомеры исполнений ЭРСВ-4Х8Ф настраиваются только в заводских условиях в соответствии с картой заказа.

2. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ЛАЙТ M RTC (пользовательский) ВЕРСИЯ 2.X.vpr»

2.1. Программное подключение ПК к расходомеру

2.1.1. Запустить на ПК программу «Универсальный просмотрщик». После чего в появившейся строке меню программы (рис.3) выбрать **Про**ект\Открыть\Projects и запустить файл «Лайт М RTC (пользовательский) версия 2.X.vpr» (далее – «Монитор»).

∎⁄ Унив	ерсальный про	смотрщик М	1odBus - C	:\Program	n Files (>	(86)\Vzljot\UBViewe		×
Проект	Соединение	Графики	Архивы	Сервис	Окно	Помощь		
								//

Рис.3. Вид строки меню программы «Универсальный просмотрщик».

ПРИМЕЧАНИЕ. Файл «Лайт М RTC (пользовательский) версия 2.X.vpr» также можно запустить непосредственно из папки его хранения на ПК (например, возможный путь к папке с файлом по умолчанию c:\Program Files (x86)\Vzljot\UBViewerProjects\Projects\).

На экране ПК начнется отображение главного окна программы «Монитор» (рис.4), содержащее вкладки с наборами измерительных и установочных параметров.

~ ~				
Измерения Настройки Пер	иферия Индикатор	Архивы	Контрольная инфо	рмация Параме
Старт чтения Серийный нон (0 Текущие значения Расход максимальн (0,000 Расход текущий (0,000 Текущее время и дата Время наработки, ч Суммарный объём, м3 Объём в прямом напр., м3	Стоп чтения Диаметр, м (40 , л/мин(0.000 ,м3 , л/мин(0.000 ,м3 01/01/70 00:00:00 0.000 0.000000 0.000000 0.000000 0.000000	Ач ОООООООООООООООООООООООООООООООООООО	ояние расходоме <u>Ошибка</u> Ошибка режима (ра Некорректная опор QT > Qмакс Ошибка выхода 2 Ошибка выхода 1 Устойчивый зашка Ошибка памяти Пустая труба Низкое напр-е пита Нет нулевого поте! Воздействие магни Загрязнение элект <u>Состояние при</u> ициализация	ра зрушение базы пара за а зния чциала тоом родов <u>бора</u> Нет
Время воздействия магнито	0,00	Ko Ko	нтрольная сумма П(нтрольная сумма ба	0x0
Выходная частота УВ1, Гц Выходная частота УВ2, Гц	0,000 0,000	Pe Ha	жим работы правление	СЕРВИС Прямой
		- Ha Ди Вн	прав.в т.у. апазон ешний адрес	Прямой Малый Нет 0

Рис.4. Вид главного окна программы «Монитор Лайт М (RTC), версия 2.3 (пользовательская)».

2.1.2. Перейти на вкладку **Параметры программы** в главном окне программы «Монитор» (рис.5) и удостовериться, что для параметра **Адрес** установлено значение 1 (как при выпуске из производства).

Монитор Лайт М (RTC), версия 2.3 (пользовательская)	X
Периферия Индикатор Архивы Контрольная информация Параметры программы	• •
Параметры программы Адрес прибора 1 Ожидание ответа, мс 2000 Число попыток запроса 2	
О проекте Данный проект предназначен для работы с: Взлет ЭР модификация Лайт M (RTC) с архивами	

Рис.5. Вид вкладки «Параметры программы».

Изменение остальных установочных параметров рекомендуется выполнять только опытным пользователям.

Нажать кнопку **<Настройка соединения>** (рис.5). В открывшемся окне **Менеджер настроек** (рис.6) установить требуемые значения параметров связи:

- Выбор транспорта тип интерфейса для связи (RS-485);
- **СОМ-порт** обозначение виртуального СОМ-порта ПК, который автоматически определяется при подключении к нему адаптера;
- Скорость обмена по умолчанию в расходомере установлено значение 19200 бит/с.

Выбор транспорта: RS485	•
Параметры транспорта	
СОМ-порт СОМ8	 Ожидание ответа, 2000
Скорость обмена, б 19200	 Количество повто 1
	Байтовый таймау 20
🔲 Использовать DC	
Имя удаленного компью	

Рис.6. Вид окна «Менеджер настроек».

После завершения изменения настроек нажать кнопку < OK >.

2.1.3. Для установления связи ПК с расходомером нажать кнопку <Канал

связи> во вкладке **Параметры программы**, либо кнопку на панели меню основного окна программы «Монитор». При удачном завершении операции в строке состояния «Монитора» должны появиться сообщения **Канал связи открыт** и **Команда выполнена успешно**.

При отсутствии связи с расходомером в строке состояния основного окна программы «Монитор» будут индицироваться сообщения. Канал связи открыт, Прибор не отвечает.

В этом случае следует закрыть канал связи, повторно нажав кнопку **«Канал связи»**. Далее следует проверить правильность подключения сигнальных кабелей к ПК и расходомеру, а также корректность значений параметров **Адрес**, **Выбор транспорта**, **СОМ-порт**, **Скорость обмена**.

После чего следует повторить попытку установления связи с расходомером.

2.2. Чтение и запись установочных параметров

- 2.2.1. После программного подключения ПК к расходомеру во всех вкладках главного окна программы «Монитор» становятся активными кнопки, позволяющие запускать процесс чтения значений измерительных и установочных параметров расходомера: <Старт чтения>, <Прочитать все>, <Чтение текущих значений>. Нажатие на соответствующую кнопку приводит к обновлению значений параметров, индицируемых во вкладке.
- 2.2.2. Запись в расходомер значений установочных параметров после их редактирования производится по нажатию кнопки <Записать>.

ПРИМЕЧАНИЕ. Рекомендуется после завершения записи значений параметров выполнить операцию их чтения с целью проверки корректности ввода данных.

2.3. Настройка параметров измерения расхода

Установочные параметры измерения расхода находятся во вкладке **Настройки** главного окна программы «Монитор» в области **Настройки измерения расхода** (рис.7).

онстанта фильтра 6		÷1	
Отсечки, %Q <u>макс</u>			-
По убыванин ^{0,0} По нара	стан	и 0,0	4
Автомат быстрой установк	ирас	хода	
Автомат быстрой установк Быстрая установка	и рас Вкл.	хода	4
Автомат быстрой установк Быстрая установка Порог срабатывания, %Qm	и рас Вкл. 5	хода	<u>+</u>
Автомат быстрой установк Быстрая установка Порог срабатывания, %Qма Точка включения, %Qмакс	и рас Вкл. 5 0,0	хода	ц ц

Рис.7. Вид области «Настройки измерения расхода».

Назначения установочных параметров расхода.

- Константа фильтра время установления сигнала (длительность переходного процесса) на выходе расходомера. Возможные значения параметра приведены в табл.2.
- Отсечки, %Qмакс По убыванию (По нарастанию) пороговые значения расхода, ниже которых (при изменении расхода в большую и меньшую сторону соответственно) прекращается накопление объема и выдача импульсов на универсальном выходе. При этом индицируется нулевое значение расхода. Нештатные ситуации (НС) не фиксируются.

В расходомере реверсивного исполнения отсечки срабатывают как при положительном, так и при отрицательном направлении потока. Сигнал направления потока также изменяется с учетом установленных отсечек.

При выпуске из производства для каждой из отсечек устанавливается типовое значение, приведенное в табл.А.4 приложения А.

Область **Автомат быстрой установки расхода** содержит параметры, позволяющие изменять настройки алгоритма быстрой установки расхода при его резком изменении.

- Быстрая установка включение/отключение алгоритма быстрой установки;
- Порог срабатывания, %Qмакс разность расходов в процентах от максимального, сигнализирующая о необходимости включения алгоритма быстрой установки расхода.
- Точка включения, %Qмакс значение расхода в процентах от максимального, выше которого будет работать алгоритм;

• Защита от дребезга – время, в течение которого должно происходить срабатывание алгоритма. Указывается в условных единицах, одна единица соответствует 1/10 секунды.

При выпуске из производства устанавливается значение константы фильтра сигнала расхода равное 6 и включается алгоритм установки расхода с типовыми значениями параметров. Справочное время реакции прибора на изменение расхода при различных комбинациях параметров указано в табл.2.

Таблица 2

Константа фильтра	Время установлени	я значения расхода, с
сигнала расхода	Алгоритм включен	Алгоритм отключен
0	1	1,5
1	2	3
2	3	6
3	5	12
4	6	24
5	6	48
6	6	96
7	7	192
8	8	384

По вопросам выбора параметров фильтра и алгоритма установки расхода обращаться к изготовителю.

Область Настройки определения пустой трубы содержит установочные параметры при работе с жидкостями, отличными по электрической проводимости от водопроводной воды.

Рекомендуется провести коррекцию значения порога срабатывания критерия «Пустая труба» по следующей методике:

- убедиться, что трубопровод целиком заполнен измеряемой жидкостью;
- во вкладке Настройки определения пустой трубы (рис.8) прочитать значения параметров Эталонный код ПТ (например, 75 условных единиц) и Текущий код (например, 25 условных единиц);

Настройки определения пустой трубы Включение промера Выкл. Порог ПТ, % 67 Текущий код 25 Эталонный код ПТ 75

Рис.8. Вид области «Настройки определения пустой трубы».

 рассчитать новое пороговое значение сигнала для измеряемой жидкости по формуле:

$$\Pi = \frac{K_{T} + 0.5 \cdot (K_{\Im} - K_{T})}{K_{\Im}} \cdot 100\%,$$

где П – новое пороговое значение сигнала на пустом трубопроводе в процентах;

К_э – эталонное (калибровочное) значение зондирующего сигнала (значение параметра **Эталонный код ПТ**);

К_т – текущее (измеренное) пороговое значение сигнала (значение параметра **Текущий код**);

- записать рассчитанное по формуле новое пороговое значение сигнала на пустом трубопроводе для параметра **Порог ПТ, %**.

2.4. Настройка параметров универсальных выходов

2.4.1. Установочные параметры универсальных выходов находятся во вкладке **Периферия** главного окна программы «Монитор» в области **Настройки универсальных выходов** (рис.9).

Универсальный	вы	код 1	Универсальный выход 2 💶 🕨
Тип выхода Отключен С Логический С Импульсны С Частотный	Отключен	Had	строи́ки отстутствуют
Активный уроє () "Низкий" "Высокий"			

Рис.9. Вид области «Настройки универсальных выходов».

Вкладки Универсальный выход 1 и Универсальный выход 2 имеют одинаковую структуру и содержат установочные параметры универсальных выходов №1 и №2 соответственно. При этом часть установочных параметров располагается во вложенной (дополнительной) вкладке, наименование и содержимое которой изменяется в соответствии с установленным режимом работы выхода.

Режим работы универсального выхода (Частотный, Импульсный, Логический) задается в области Тип выхода. Для этого следует установить переключатель перед требуемым наименованием режима и нажать кнопку <Записать>.

2.4.2. В частотном режиме (установлено значение Тип выхода Частотный) на универсальный выход поступает импульсная последовательность типа «меандр» со скважностью 2 и нормированным весом импульса. Частота следования импульсов пропорциональна среднему объемному расходу, измеренному в течение предыдущих 80 мс. Предельная частота – 500 Гц.

При работе в частотном режиме задаются значения параметров: Константа преобразования (имп/л), Максимальная частота (панель Частотный выход) и уровень сигнала (Низкий, Высокий) в области Активный уровень (рис.10).

Эниверсальный в	выход 1	Универсальный выхо	д2.◀
Тип выхода С Отключен С Логический С Импульсны Ф Частотный	Конст Макс	танта преобразовани имальная частота	1940,000 500
Активный уров • "Низкий" С "Высокий" Записать		зь ^р асход по модулю ^р асход прямой ^р асход обратный	

Рис.10. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Частотный».

Установочные параметры во вкладке Частотный выход.

◆ Константа преобразования. По умолчанию при выпуске расходомеров из производства для универсального выхода №1 устанавливается частотный режим работы и значение параметра Константа преобразования, указанное в Приложении А (может устанавливаться в пределах от 0,0001 до 9999 имп/л).

Для определения значения параметра Константа преобразования с учетом максимального значения расхода в трубопроводе, где будет устанавливаться расходомер, а также частотных свойств приемника импульсного сигнала можно воспользоваться формулой:

Константа преобразов ания
$$\leq \frac{3,6 \cdot F}{Q_{_{MAKC}}} = \frac{1,8 \cdot 10^3}{Q_{_{MAKC}} \cdot \tau_{_{H}}}$$
 [имп/л] ,

где Q_{макс} – максимальный эксплуатационный расход в трубопроводе, м³/ч;

F – максимально допустимая для приемника частота следования импульсов на выходе расходомера, Гц;

ти = 0,5·Ти – минимально допустимая для приемника длительность импульсов расходомера, мс;

Ти – период следования импульсов на выходе расходомера, мс.

Назначение выхода в частотном режиме задается установками в области Связь.

- Расход по модулю импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе при любом направлении потока.
- Расход прямой импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при прямом направлении потока.

• Расход обратный – импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при обратном направлении потока.

Также задаются значения следующих параметров.

- Максимальная частота частота, соответствующая максимальному расходу в данном трубопроводе. Превышение на выходе значения параметра Максимальная частота диагностируется в расходомере как нештатная ситуация, т.е. заданное для данного выхода значение константы преобразования некорректно.
- Активный уровень это уровень сигнала (Высокий или Низкий), соответствующий наличию импульса. Электрические параметры уровней сигнала приведены в Приложении В части I настоящего руководства.
- 2.4.3. В импульсном режиме (установлено значение **Тип выхода Импульсный**) выходы могут использоваться для вывода результатов измерения в виде импульсной последовательности типа «меандр» со скважностью 2 и нормированным весом импульсов.

В импульсном режиме работы в течение секунды на выход поступает пачка импульсов, количество которых с учетом веса импульса соответствует объему, измеренному за предыдущую секунду. Максимальная частота следования импульсов, как и в частотном режиме, не превышает 500 Гц.

Параметры настройки выходов для импульсного режима работы находятся во вкладке Импульсный выход (рис.11).

Рис.11. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Импульсный».

При работе в импульсном режиме задаются значения параметров **Период импульсов**, **Константа преобразования** (возможен расчет значения по той же формуле, что и для частотного режима), а также **Активный уровень**.

 Период импульсов – период следования импульсов в пачке; может быть задано значение от 2 до 1000 мс, т.е. частота следования импульсов от 500 до 1 Гц. Назначение выхода в импульсном режиме задается установками в области Связь.

- Объем по модулю импульсы, количество которых пропорционально измеренному значению объема, поступают на выход при любом направлении потока.
- Объем прямой импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при прямом направлении потока.
- Объем обратный импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при обратном направлении потока.
- 2.4.4. В логическом режиме (установлено значение **Тип выхода Логический**) на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) – другой уровень сигнала.

Параметры настройки выходов для логического режима работы находятся во вкладке **Логический выход** (рис.12).

Программно для логического режима задается его назначение и значение параметра **Активный уровень**.

ниверсальный вы:	код 1 Универсальный выход 2 4
Тип выхода Отключен Погический Импульсны Частотный	Событие С Обратное направление пот С Ошибка Q > Qмакс С Любая ошибка
ктивный уров 9 "Низкий" 2 "Высокий" 2	 Пустая труба Обр.направ.потока для теп Флаг наличия питания ("Вы

Рис.12. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Логический».

Назначение выхода в логическом режиме задается установками в области Событие.

- Обратное направление потока уровень сигнала на выходе изменяется без задержки при изменении направления потока в трубопроводе.
- Ошибка Q > Qмакс уровень сигнала на выходе изменится, если измеренное значение расхода превысит значение Qмакс для данного DN расходомера.
- Любая ошибка уровень сигнала на выходе изменится при возникновении любой нештатной ситуации, диагностируемой прибором.

- Пустая труба уровень сигнала на выходе изменится, если включенный алгоритм определения заполнения трубопровода сигнализирует о его неполном заполнении.
- Обр. направ. потока для теплоучета изменение уровня сигнала на выходе произойдет только, если длительность времени изменения направления потока превысит заданное время инерции; значение параметра Т инерции потока может быть установлено в диапазоне от 0 до 60 минут; значение параметра Активный уровень соответствует прямому направлению потока.
- Флаг наличия питания ("Высокий") при наличии напряжения питания на выходе формируется Высокий уровень сигнала, при напряжении питания ниже допустимого напряжение на выходе отсутствует.
- 2.4.5. В расходомере предусмотрена возможность проверки работоспособности универсальных выходов в частотном режиме. Установочные параметры для проведения тестирования находятся во вкладке **Тест выходов** (рис.13), переход к которой производится нажатием кнопки

Эниверсальный выход 2	Тест выходов
Тест частотных выходо	В
Тест Выкл 🔻 🚽 F1,	Гц0,0
F2,	гц0,0 🖌
	,

Рис.13. Вид вкладки «Тест выходов».

Задаваемая тестовая частота **F1** и **F2** для обоих универсальных выходов не должна превышать значения 500 Гц.

После запуска процедуры тестирования (Тест Вкл.) кнопкой следует измерить частоту на универсальных выходах с помощью частотомера.

ПРИМЕЧАНИЕ. Для корректного измерения частоты универсальные выходы должны быть переведены в активный режим работы (см. часть І настоящего руководства).

2.5. Быстрая настройка универсального выхода №1

По умолчанию при выпуске расходомеров из производства для универсальных выходов №1 и №2 устанавливаются режимы работы и назначения, указанные в Приложении А.

Возможна поставка расходомеров с функцией быстрой настройки значения **Константы преобразования** универсального выхода №1 в частотном режиме в зависимости от DN расходомера. Для этого на плате модуля обработки предусмотрены контактные пары J1 и J2 (см. Приложение Б части I настоящего руководства).

ВНИМАНИЕ! Быстрая настройка Константы преобразования возможна только в расходомерах с модулем обработки ШКСД.408843.024 с контактными парами J1 и J2.

ВНИМАНИЕ! Параметр Константа преобразования по умолчанию устанавливается для скорости потока 5 м/с!

Для реализации указанной функции в расходомере следует установить режим СЕРВИС. Значения параметров Максимальная частота и Константа преобразования универсального выхода №1 задаются комбинацией наличия/отсутствия замыкания контактных пар J1 и J2 в соответствии с табл.3. Где «+» – наличие замыкания контактной пары, а «-» – отсутствие замыкания. При этом происходит перезапись ранее введенного значения, на значение, заданное установленной комбинацией перемычек.

Таблица 3

Контактные пары		Устанавливаемая константа преобразования
J1	J2	для универсального выхода №1
-	-	Устанавливается по интерфейсу
+	-	см. табл.4
-	+	см. табл.5
+	+	см. табл.6

Таблица 4

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Г макс, Гц							10						
Константа преоб- разования, имп/л	20	8	5	3,2	2	1,3	0,8	0,5	0,32	0,2	0,08	0,05	0,02

Таблица 5

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Гмакс, Г ц							100						
Константа преоб- разования, имп/л	200	80	50	32	20	12,5	8	5	3,2	2	0,8	0,5	0,2

Таблица 6

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Гмакс, Г ц							500						
Константа преоб- разования, имп/л	1000	400	250	160	100	65	40	25	16	10	4	2,5	1

ВНИМАНИЕ! В режимах НАСТРОЙКА и РАБОТА изменение параметра «Константа преобразования» с использованием контактных пар J1 и J2 невозможно!

При отсутствии перемычек на контактных парах J1 и J2 возможна установка по интерфейсу любого, требуемого значения параметра, как для выхода №1, так и для выхода №2.

ВНИМАНИЕ! В реверсивном исполнении расходомера измерение расхода и накопление объема при прямом и обратном направлениях потока выполняется без учета времени инерции.

Перед установкой на контактную пару перемычки рекомендуется нанести на ее токопроводящую часть специальную смазку (например, ЭПС-98) для обеспечения надежного электрического контакта в течение всего межповерочного интервала времени.

2.6. Настройка параметров связи с прибором

Для изменения настроек связи расходомера и ПК в области **Настройки связи** во вкладке **Настройки** (рис.14) могут быть установлены следующие параметры:

- Сетевой адрес целое число от 1 до 247;
- Задержка RTS задержка ответа по RS-интерфейсу, мс;
- ◆ Скорость скорость обмена в сети (по умолчанию 19200 бод);
- М/б задержка межбайтовая задержка, мс;
- Протокол сетевой протокол (по умолчанию RTU ModBus).

Сетевой адрес	1
Задержка RTS,	50 📣
Скорость, бод	1920(🔻
М/б задержка, №	4
Протокод	RTU ModB 👻 🛃

Рис.14. Вид области «Настройки связи».

При нажатии на кнопку < Сброс настроек связи по умолчанию > восстанавливаются заводские настройки связи.

ВНИМАНИЕ! При изменении значений параметров «Сетевой адрес» и «Скорость» во вкладке «Настройки связи» необходимо продублировать эти настройки во вкладке «Параметры программы».

2.7. Настройка параметров индикатора

Настройки отображаемых параметров на дисплее расходомера исполнений ЭРСВ-5Х0Х содержатся во вкладке **Индикатор**, (рис.15).

Измерения Настройки Периферия Индикат	ор Архивы Контрольная информ	1ация Парамє <u> </u>
Прочитать Записать Выбор параметров для индикации ✓ Показывать текущий расход Единицы отображения ра ④ л/мин ○ м3/час ✓ Показывать сумарный объем ✓ Показывать объем прямого пс ✓ Показывать объем обратного Единицы отображения об ● ✓ Показывать время наработки ✓ Показывать калибровочные коэффици ✓ Показывать коэффициенты КІ ✓ Показывать куС прошивки и базы параме ✓ Показывать текищию лати и время	Настройки индикации Период индикации, сек Автопрокрутка параметров Отсечка по индикатору, %Qма Контраст индикатора Язык меню	3 да ▼),0 32 Русски ▼

Рис.15. Вид вкладки «Индикатор».

Включение/отключение отображения требуемых параметров осуществляется установкой флажка в соответствующей строке списка в области **Выбор параметров для индикации**

Назначение параметров области **Выбор параметров для инди**кации.

- Показывать текущий расход отображение текущего измеряемого расхода. Дополнительно можно выбрать размерность индикации л/мин или м³/час.
- Показывать суммарный объем отображение суммарного объема.
- Показывать объем прямого потока отображение объема прямого направления потока.
- Показывать объем обратного потока отображение объема обратного направления потока. Дополнительно можно выбрать размерность индикации объемов литры или м³.
- Показывать время наработки отображение общего времени работы прибора.
- Показывать калибровочные коэффициенты К, Р отображение метрологических коэффициентов К и Р. Индицируются только коэффициенты используемого диапазона.
- Показывать коэффициенты КР1, КР2 отображение параметра Константа преобразования для первого и второго универсального выхода.

• Показывать К/С прошивки и базы параметров – отображение контрольных сумм ПО и базы настроек прибора.

Параметры группы Настройки индикации.

- Период индикации период времени циклического отображения параметров на индикаторе, устанавливается в диапазоне от 1 до 100 секунд.
- Автопрокрутка параметров режим циклического отображения параметров на индикаторе.
- Отсечка по индикатору, %Qмакс граничное отображаемое значение расхода в процентах от максимального, ниже которого будет отображаться нулевое значение, а накопление объема и выдача импульсов продолжаются.
- Контраст индикатора контрастность отображения символов, изменяется в пределах от 8 до 40 условных единиц.
- Язык меню язык отображаемого меню Русский или Английский.

2.8 Установка даты и времени.

Установка даты и приборного времени в расходомере возможна в любом режиме: НАСТРОЙКА, СЕРВИС или РАБОТА. Установка производится во вкладке **Настройки** (см. рис.16):

1змерения Настройки Периферия Индикатор Архивы Кон	нтрольная информация Параметры программы
Прочитать все	
Настройки измерения расхода	Настройки определения пустой трубы
Константа фильтра 0 Д	Включение промера ПТ Выкл. Порог ПТ, % 0 Текущий код 0 Эталонный код ПТ 0
Быстрая установка Откл. Порог срабатывания, %Qмакс 0 Точка включения, %Qмакс 0,0 Защита от дребезга 0	Контроль наличия нулевого потенциала Алгоритм КНП Выкл. Т Порог НП 0 Текущий код 0 Реакция Регистрация Т
Установка времени	Обнаружение воздействия магнитом
Дата и время 01/01/70 00:00:00	Реакция Регистрация 🗨 🚽
Последняя коррекция 01/01/70 00:00:00 Режим перевода нет 💽 🚽	Контроль загрязнения электродов Контроль загрязнения Отключен 🔹 🛃 Нижний порог, % 0 Верхний порог, % 0

Рис.16. Вид вкладки «Настройки».

Формат установки даты: ДД/ММ/ГГ. Формат установки приборного времени: ЧЧ:ММ:СС. Глубина коррекции времени имеет ограничение и зависит от периода времени, прошедшего с момента предыдущей коррекции. Записать можно время, которое отличается от текущего

приборного времени не более, чем на ΔT = 5 сек x N, где N – число дней, прошедших с даты предыдущей коррекции.

2.9. Отображение измеряемых параметров

Текущие значения измеряемых параметров отображаются во вкладке **Измерения** основного окна программы «Монитор» в области **Текущие значения**. После запуска программы «Монитор» отображаются нулевые значения измеряемых параметров (рис.17). Для начала индикации текущих измеренных значений необходимо нажать кнопку **Старт чтения**>.

Измерения Настройки Пер	иферия Индика	тор Архивь	ы Контрольная инфо	ормация Парамє 💶 🕨
Старт чтения Серийный ном (0 Текущие значения Расход максимальн (0,000	Стоп чтения Диаметр, м(40 , л/мин(0,000	.м3/ч	стояние расходоме <u>Ошибки</u>) Ошибка режима (ра) Некорректная опор) QT > Qмакс) Ошибка выхода 2) Ошибка выхода 1	ра зрушение базы парам за
Расход текущий U,000 Текущее время и дата Время наработки, ч Суммарный объём, м3	, л/миң0,000 01/01/70 00:00:00 0,000 0,000000		 Эшнока выхода т Эстойчивый зашка; Ошибка памяти Пустая труба Низкое напр-е пита; Низкое напр-е пита; Нет нулевого поте; Воздействие магни; Загрязнение элект 	п ания нциала 1том родов
Объём в прямом напр., мз Объём в обратном напр., м3 Время воздействия магнито	0,000000	К	Состояние при Інициализация онтрольная сумма П(онтрольная сумма ба	бора Нет (0x0 0x0
Выходная частота УВ1, Гц Выходная частота УВ2, Гц	0,000	Р Н Д В	ежим работы Іаправление Іаправ.в т.у. Іиапазон інешний адрес	СЕРВИС Прямой Прямой Малый Нет 0

Рис.17. Вид вкладки «Измерения».

Параметры в области Текущие значения.

- Расход максимальный максимальный объемный расход, значение записывается в память расходомера при выпуске из производства в соответствии со значением DN первичного преобразователя (л/мин, м³/ч).
- Расход текущий объемный расход при любом направлении потока (л/мин, м³/ч).
- Время наработки продолжительность работы расходомера (ч).
- Суммарный объем алгебраическая сумма (с учетом знака) значений объема при прямом и обратном направлении потока (м³).
- Объем в прямом напр. объем при прямом направлении потока, учитывается со знаком плюс (м³).

- Объем в обратном напр. объем при обратном направлении потока, учитывается со знаком минус (м³).
- Выходная частота УВ1 (УВ2) частота на универсальном выходе 1 и универсальном выходе 2 (Гц).

Индицируемые параметры области Состояние расходомера в группе Состояние прибора.

- Инициализация степень готовности прибора к работе. В случае отображения символов, отличных от **Все ОК**, прибор необходимо отправить на ремонт.
- Контрольная сумма ПО контрольная сумма ПО расходомера.
- Контрольная сумма базы контрольная сумма базы настроечных параметров прибора.
- Режим работы текущий режим работы прибора.
- Направление направление потока контролируемой жидкости в трубопроводе.
- Направ. в т.у. направление потока контролируемой жидкости в трубопроводе с учетом времени инерции.
- Диапазон диапазон измеряемого расхода (Большой, Средний или Малый).

2.10. Отображение метрологических параметров

Просмотр основных метрологических и части функциональных параметров прибора возможен во вкладке **Контрольная информа-**ция (рис.18).

П	очитать все			
Серийный номер	1254217 Диаме	тр, мм 50	Эталонные оп	орные уровни-
Гранины диаразо	HOR 20Marc		Верхняя опора	1762378
0,00 - 100,00		00,00 - 100,00	Смещение	-131
Малый расход	Средний расход	Большой расход	Текущие опор	ные уровни
K0+ 0,4000000	K1+ 0,4000000	K2+ 0,4000000	Верхняя опора	1762378
P0+ 0,0000000	P1+ 0,0000000	P2+ 0,0000000	Смещение	-131
KO- 0,4000000	K1- 0,4000000	K2- 0,4000000	Cincatonic	1.01
P0- 0,0000000	P1- 0,0000000	P2- 0,0000000	Сопротивлени	е катушек
			R исходное, Ом	29,4
Колинество перечол		1	R текущее, Ом	30,5
Количество переход	ов в режим "Поверка"	1		
Количество записе	в сервисном журнале	17		
Количество записей	і в поверочном в журнале	17		
Информация о пр	ограммном обеспечени	414		
V		0xCA83		

Рис.18. Вид вкладки «Контрольная информация».

В области **Границы диапазонов, %Qмакс** отображаются установленные в расходомере диапазоны расхода в процентах от его максимального значения. И далее – метрологические коэффициенты К и Р, отображаемые в областях **Малый расход**, **Средний расход** и **Большой расход**.

В области **Информация о действиях пользователя** содержится информация о числе переходов в режимы СЕРВИС и ПОВЕРКА, а также общее количество изменений в сервисном и поверочном журналах. Получить доступ к содержимому сервисного и поверочного журнала возможно с помощью соответствующего ПО, размещенного на сайте по адресу <u>www.vzljot.ru</u>.

В области **Информация о программном обеспечении** отображается контрольная сумма ПО расходомера.

Значения параметров, отображаемые в областях **Эталонные** опорные уровни, Текущие опорные уровни, Сопротивление катушек предназначены для диагностирования неисправностей расходомера специалистами сервисных организаций.

2.11. Отображение диагностируемых ошибок и НС

2.11.1. Список ошибок (неисправностей) и нештатных ситуаций, диагностируемых в работе расходомера, содержится во вкладке **Измерения** в области **Состояние расходомера** (рис.19).

Рис.19. Вид области «Состояние расходомера».

При диагностировании ошибки или НС перед ее соответствующим обозначением в списке начинается индикация символа • (круга красного цвета). В расходомерах исполнений ЭРСВ-5Х0Х сообщения об ошибках и НС также отображаются и на индикаторе в виде символа «!» и буквенно-цифрового кода.

Общий перечень ошибок и нештатных ситуаций приведен в табл.7.

Таблица	7	
Ви На индикаторе	нд индикации На дисплее ПК	Содержание неисправности, нештатной ситуации
! N	Ошибка режима (раз- рушение базы пара- метров)	Повреждение базы установочных параметров прибора
! 0	Некорректная опора	Нет промера опорного сопротивления, аппаратная не- исправность
! Q	Q т>Qмакс	Текущее значение расхода превышает значение Qмакс для данного DN
! 2	Ошибка выхода 2	Некорректное значение Константы преобразования по выходу 2
!1	Ошибка выхода 1	Некорректное значение Константы преобразования по выходу 1
! 3	Устойчивый зашкал	Уровень входного сигнала выше допустимого
! E	Ошибка памяти	Неисправна микросхема памяти EEPROM
! П	Пустая труба	Значение сопротивления выше заданного (пустая тру- ба)
! H	Низкое напр-е питания	Питание прибора ниже допустимого
! K	Нет нулевого потенциала	Не подключены заземляющие проводники
! M	Воздействие магнитом	Попытка внешнего воздействия на расходомер посто- янным магнитом
! Э	Загрязнение элек- тродов	Критическое загрязнение электродов

- 2.11.2. При появлении на индикаторе расходомера символов **!О**, **!Е**, **!И** или сообщений на дисплее ПК Некорректная опора, Ошибка памяти, Ошибка режима (разрушение базы параметров) прибор необходимо отправить в ремонт.
- 2.11.3. В случае индикации других символов и/или отсутствия измерительной информации следует проверить:
 - наличие и соответствие нормам напряжения питания на входе расходомера и источника вторичного питания;
 - надежность подсоединения цепей питания;
 - наличие жидкости и ее движения в трубопроводе;
 - отсутствие скопления газа в месте установки расходомера;
 - отсутствие превышения температуры окружающей среды в месте установки расходомера;
 - корректность значений параметров **Константа преобразования**, отсечек по расходу и других установочных параметров; при необходимости изменить их значения.

Если проведенные мероприятия не приводят к восстановлению нормальной работы расходомера, следует обратиться в сервисный

центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.

ПРИМЕЧАНИЕ. В случае возникновение НС **Ошибка памяти** измерение расхода и накопление объемов продолжается, но становится невозможно изменение параметров расходомера.

- 2.11.4. Если при наличии движения жидкости в контролируемом трубопроводе в приемнике выходного импульсно-частотного сигнала расходомера не меняется значение измеряемого объема, необходимо проверить соответствие режима работы оконечного каскада универсального выхода расходомера режиму входа приемника сигнала (см. часть I настоящего руководства).
- 2.11.5. Расходомер «ВЗЛЕТ ЭР» исполнения «Лайт М» по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится в специализированных мастерских, либо на предприятии-изготовителе.

2.12. Изменение уровня доступа к настройкам.

- 2.12.1. Изменять доступ в режиме СЕРВИС к настройкам отсечек по измерению расхода и режимов работы универсальных выходов на доступ в режиме НАСТРОЙКА рекомендуется после завершения полной настройки расходомера на месте эксплуатации.
- 2.12.2. Для изменения доступа в режиме СЕРВИС на доступ в режиме НАСТРОЙКА следует:
 - запустить программу Монитор Лайт М (RTC), версия 2.4 (пользовательская);
 - установить связь с прибором и перейти на вкладку **Доступ к параметрам** (рис.20):

- мерения Настройки Периферия Индикато	р Доступ к параметрам Архивы Контрольная информация Параметры программь	я]
manager according to a second on "Use		
тановить доступ только в режиме "Нас	стройка" для следующих групп параметров: «Чможно билет только из режима "Настройка!")	
становить доступ только в режиме "Нас арнуть доступ к параметрам в режиме "Сервис	стройка" для следующих групп параметров: "можно будет только из режима "Настройка!")	
становить доступ только в режиме "Нас арнуть доступ к параметрам в режиме "Сервис Настройки универсальных выходов	стройка" для следующих групп параметров: "можно будет только из режима "Настройка!")	
становить доступ только в режиме "Нас ернуть доступ к параметрам в режиме "Сервис Настройки универсальных выходов Птоечки по расходи	гтройка" для следующих групп параметров: '' можно будет только из режима "Настройка!")	
становить доступ только в режиме "Нас эрнуть доступ к параметрам в режиме "Сервис Настройки универсальных выходов Отсечки по расходу	г тройка" для следующих групп параметров: '' можно будет только из режима "Настройка!")	
становить доступ только в режиме "Нас ернуть доступ к параметрам в режиме "Сервик Настройки универсальных выходов Отсечки по расходу Прочитать	гтройка" для следующих групп параметров: "можно будет только из режима "Настройка!")	

Рис.20. Вид вкладки «Доступ к параметрам».

 установить флажок перед наименованием параметра Настройки универсальных выходов и/или Отсечки по расходу и нажать кнопку <Записать>.

- 2.12.3. Для восстановления доступа в режиме СЕРВИС к настройкам отсечек по измерению расхода и режимов работы универсальных выходов следует:
 - перевести прибор в режим НАСТРОЙКА;
 - запустить программу Монитор Лайт М (RTC), версия 2.4 (пользовательская);
 - установить связь с прибором и перейти на вкладку **Доступ к параметрам** (рис.20);
 - снять флажок перед наименованием параметра Настройки универсальных выходов и/или Отсечки по расходу;
 - нажать кнопку <Записать>.

ВНИМАНИЕ! Переход в режим НАСТРОЙКА возможен только после удаления пломбы поверителя.

3. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ВЗЛЕТ ЭР ЛАЙТ М 41.85.15.55, ВЕРСИЯ 22.3»

3.1. Подготовка к работе

Сервисная программа **Монитор** "**ВЗЛЕТ ЭР Лайт М 41.85.15.55**" (далее «Монитор») предназначена для настройки расходомеров с установленным модулем обработки ШКСД.408843.005.

При активном режиме работы оконечного каскада универсальных выходов расходомера (на плату модуля обработки расходомера установлен модуль активного режима универсальных выходов) вход приемника сигнала должен находиться в пассивном режиме (конфигурация «активный выход – пассивный вход»).

При пассивном режиме работы оконечного каскада универсальных выходов расходомера вход приемника должен находиться в активном режиме (конфигурация «пассивный выход – активный вход»).

Перед началом работ необходимо выполнить подключения в соответствии с разделом 1.2.

3.2. Программное подключение ПК к расходомеру

Запустить программу «Монитор», воспользовавшись описанием необходимых при этом действий, приведенных в п.2.1.1.

На экране монитора ПК появится основное окно программы «Монитор «ВЗЛЕТ ЭР Лайт М 41.85.15.55» с открытой вкладкой **Параметры программы** (рис.21).

🖻 Монитор "Взлет ЭР Лайт М 41.85.15.55", версия 22.3 пользовательская	<u> </u>
Основные параметры и данные Индикатор Доп. настройки Регулировка Параметры программы	
Канал связи Настройка соединения Параметры программы 1 Адрес прибора 1 Ожидание ответа, мс 2000 Число попыток запроса 2	
О проекте Данный проект предназначен для работы с: Взлет ЭР исполнения Лаи́т M с версиеи́ ПО 41.85.15.55	

Рис.21. Основное окно программы «Монитор».

Порядок дальнейших действий – в соответствии с п. 2.1.2, 2.1.3.

29

3.3. Настройка параметров измерения расхода

3.3.1. Установочные параметры измерения расхода содержатся во вкладке **Регулировка** в области **Автомат быстрой установки расхода** (рис.22).

Основные параметры и данные	Индикатор	Доп.нас	тройки	Регулировка
Прочитать все				
Автомат быстрой установки р	асхода			
Быстрая установка	Вкл. 💌	4		
Порог срабатывания, %Qмакс	: 1			
Точка включения, %Qмакс	0,0			
Защита от дребезга	0	4		
Тест частотных выходов				
Тест Вкл. 💌 🛃 F1, Г	тц 0,0			
F2, I	тц 0,0	<u>ب</u>		

Рис.22. Вид вкладки «Регулировка».

Обозначение и описание параметров – в разделе 2.3.

Параметр Константа фильтра расположен во вкладке Доп. настройки (рис.23).

Основные параметры и	данные Индикатор	Доп.настройки	Регулировка
П	рочитать все		
Настройка фильтра си	гнала		
Константа фильтра	0	4	
		o+ ≪	

Рис.23. Вид вкладки «Доп. настройки».

При выпуске из производства значение параметра **Константа фильтра** устанавливается равным 6 и включается алгоритм быстрой установки расхода с типовыми значениями параметров.

ПРИМЕЧАНИЕ. По вопросам выбора параметра Константа фильтра, а также параметров области Автомат быстрой установки расхода следует обращаться на предприятие-изготовитель.

3.3.2. В расходомере предусмотрена возможность установки отсечек снизу при изменении расхода По нарастанию и По убыванию. Параметры содержатся во вкладке Основные параметры в области Отсечки, %Qмакс (рис.24)

-Отсечки, %Qман	(C	
По убыванию	0,0	По нарастанию 0,0

Рис.24. Вид области «Отсечки, %Qмакс».

Отсечки **По нарастанию** и **По убыванию** – это пороговые значения расхода, ниже которых (при изменении расхода в большую и меньшую сторону соответственно) отсутствует накопление объема, выдача импульсов и токового сигнала. При этом индицируется нулевое значение расхода.

Значение каждой из отсечек может устанавливаться в пределах от 0 до 0,255·Q_{наиб} с дискретом 0,001·Q_{наиб}. В расходомере для реверсивного потока отсечки срабатывают как при положительном, так и при отрицательном направлениях потока. Сигнал направления потока также изменяется с учетом установленных отсечек.

При выпуске из производства для каждой из отсечек устанавливается типовое значение, приведенное в табл.8.

Таблица 8

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Отсечка, м³/час	0,003	0,007	0,011	0,018	0,029	0,045	0,071	0,120	0,181	0,283	0,637	1,132	2,547

3.4. Настройка параметров универсальных выходов

Установочные параметры универсальных выходов находятся во вкладке **Основные параметры и данные** в области **Настроечные параметры** (рис.25).

Основные параметры и данные Индикатор Доп. настройки Регулиро
Настроечные параметры
Прочитать все
Серийный номер 0 Диаметр, мм 40
Универ.вых.1 Универ.вых.2 Интерфейс
Тип выхода Константа преобразования, имп/л 1,0000 О Отключен б Константа преобразования, имп/л 1,0000 О Логический В Максимальная частота 1 О Импульсный Р Аварийная частота 1
Активный уровены • "Низкий" • "Высокий" Записать • Связь • Расход по модулю • Расход прямой • Расход обратный

Рис.25. Вид области «Настроечные параметры».

Обозначение и описание установочных параметров универсальных выходов – в разделе 2.4.

3.5. Отображение диагностируемых ошибок и НС

3.5.1. Список ошибок (неисправностей) и нештатных ситуаций, диагностируемых в работе расходомера, содержится во вкладке **Основные параметры и данные** в области **Текущие значения** (рис.26).

-Текущие значен	ия				
Старт чт	ения		0	станов	
Qмакс	0,000	,м3/ч	4 0,00	0	, л/мин
Верхняя реф.	0,00000				
Расход, л/мин	0,000		Расход	, м3/ч	0,000
Вых.частота 1, Гі	4 0,000				
Вых.частота 2, Гі	1 0,000				
Время нар., ч	0,00				
Сумм. объём, м3	0,000000				
Объём +, м3	0,000000				
Объём -, м3	0,000000				
<u>Состояние</u>	прибора		<u>Ou</u>	<u>ибки</u>	
Инициализация	!!! Нет !!!	\bigcirc	Ошиб	ка режи	има
Калибровка	Отключена	Q	Некор	ректна	я опора
Режим работы	СЕРВИС	2	Qt>Qn Dennu	nax 	
Направление	Прямой	X	Ошибі	ал по в» ка вых.)	к. сигналу 2
Направ.в т.у.	Прямой	ŏ	Ошиб	ка вых.	1
Диапазон	Малый	Õ	Ошиб	ка сигн	ала
Внешний адрес	Нет 0				

Рис.26. Вид области «Текущие значения».

При диагностировании ошибки или HC (табл.9) перед ее соответствующим обозначением в списке начинается индикация символа (круга красного цвета).

Таблица 9

Сообщение	Причина
Ошибка режима	Повреждение базы установочных параметров прибора
Некорректная опора	Нет промера опорного сопротивления, аппаратная неисправность
Qt>Qmax	Текущее значение расхода превышает значение Qмакс для данного DN
Зашкал по вх. сигналу	Уровень входного сигнала выше допустимого
Ошибка вых. 2	Некорректное значение Константы преобразования по выходу 2
Ошибка вых. 1	Некорректное значение Константы преобразования по выходу 1
Ошибка сигнала	Нет входного сигнала

- 3.5.2. При отсутствии импульсов на универсальных выходах следует проверить:
 - наличие и соответствие нормам напряжения питания расходомера и источника вторичного питания;
 - надежность подсоединения цепей питания;
 - наличие жидкости и ее движение в трубопроводе;
 - отсутствие скопления газа в месте установки расходомера;
 - корректность значений коэффициентов и отсечек по расходу.

Если проведенные мероприятия не приводят к восстановлению нормальной работы расходомера, следует обратиться в сервисный центр (региональное представительство) или на предприятиеизготовитель изделия для определения возможности его дальнейшей эксплуатации.

3.5.3. Если при наличии движения жидкости в контролируемом трубопроводе в приемнике выходного импульсно-частотного сигнала расходомера не меняется значение измеряемого объема, необходимо проверить соответствие режима работы оконечного каскада выхода расходомера режиму входа приемника сигнала.

4. КОМПЛЕКС СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

В расходомерах «ВЗЛЕТ Лайт М» реализован комплекс системы защиты информации, согласованный с ФСТЭК России и имеющий знак соответствия Системы сертификации средств защиты информации по требованиям безопасности информации № РОСС RU.0001.01БИ00.

4.1. Дискреционный принцип контроля доступа

4.1.1. Комплекс средств защиты (КСЗ), реализованный в расходомере, контролирует доступ различных категорий пользователей к различным функциональным возможностям расходомера.

Контроль доступа пользователей к функциям расходомера осуществляется с помощью наличия/отсутствия замыкания контактных пар J3 и J4 (J1 и J2 в расходомерах с модулем обработки ШКСД.408843.005) с помощью перемычек, либо с помощью нажатия кнопок **<НАСТРОЙКА>** и **<СЕРВИС>**, расположенных на плате модуля обработки.

4.1.2. Режим НАСТРОЙКА доступен только персоналу завода-изготовителя и персоналу сертифицированных сервисных центров, имеющих лицензию на проведение поверки приборов.

Поверка и калибровка расходомера производятся при отсутствии перемычек на контактных парах J3 и J4 (при замкнутой перемычкой контактной паре J1 в расходомерах с модулем обработки ШКСД.408843.005), или путем нажатия кнопки <НАСТРОЙКА>. По окончании поверки, на контактную пару J3 устанавливается перемычка (с контактной пары J1 в расходомерах с модулем обработки ШКСД.408843.005 перемычка снимается). Далее контактная пара J3 (J1), либо кнопка <**НАСТРОЙКА**> закрывается защитным колпачком, который пломбируется госповерителем, при этом расходомер переводится в режим СЕРВИС. Таким образом, перевод расходомера в режим НАСТРОЙКА невозможен без вскрытия метрологической пломбы.

4.1.3. Режим СЕРВИС доступен сотрудникам сервисных центров и эксплуатирующих организаций, осуществляющих шефмонтаж и настройку расходомера при вводе в эксплуатацию. Настройка расходомера производится при отсутствии перемычки на контактной паре J2 в расходомерах с модулем обработки ШКСД.408843.005), или путем нажатия кнопки <СЕРВИС>. По окончании настройки на контактную пару J4 устанавливается перемычка (с контактной пары J2 в расходомерах с модулем обработки ШКСД.408843.005 перемычка снимается). Далее контактная пара J4 (J2), либо кнопка <СЕРВИС> закрывается защитным колпачком, который пломбируется представителем сервисного центра, при этом расходомера в режим СЕРВИС невозможен без вскрытия эксплуатационной пломбы.

- 4.1.4. Режим РАБОТА доступен представителям эксплуатационных и контролирующих служб и предназначен для съема измерительной информации с расходомера в процессе его эксплуатации.
- 4.1.5. Приведенный выше алгоритм установки / снятия перемычек на контактные пары J3 и J4 (J1 и J2 в расходомерах с модулем обработки ШКСД.408843.005), работа с кнопками <НАСТРОЙКА> и <СЕРВИС> и порядок их пломбирования реализует дискреционный принцип контроля доступа различных категорий пользователей к режимам работы и функциональным возможностям расходомера и является одной из составляющих комплекса средств защиты информации.

4.2. Взаимодействие пользователя с КСЗ

4.2.1. Для взаимодействия пользователя с КСЗ предусмотрена возможность применения персонального компьютера, подключаемого к расходомеру через адаптер USB-ЭР (UART), подключаемый к модулю обработки вместо модуля интерфейсов.

При использовании интерфейса обеспечивается доступ к настроечным и калибровочным параметрам расходомера в зависимости от установленного уровня доступа (см. п.4.1).

- 4.2.2. Для настройки расходомера в режимах СЕРВИС и РАБОТА, а также считывания измерительной информации при помощи персонального компьютера, на ПК должна быть установлена программа «Универсальный просмотрщик», содержащая пакет мониторов, в том числе, «Монитор Лайт М» (версия 1.07 пользовательская) и «Монитор «ВЗЛЕТ ЭР Лайт М 41.85.15.55» для расходомеров с модулем обработки ШКСД.408843.005. Программы распространяются без ограничений и доступна для загрузки с сайта <u>www.vzljot.ru</u>.
- 4.2.3. В случае оснащения модуля индикации расходомера RFID-меткой, обеспечивается доступ к настроечным и калибровочным параметрам расходомера при помощи мобильного устройства (смартфон) с установленным системным программным обеспечением (приложение «Монитор Лайт М»), с помощью которого организуется связь с расходомером по беспроводному интерфейсу (кроме расходомеров с модулем обработки ШКСД.408843.005).
- 4.2.4. Поверка расходомера проводится при помощи инструментальной программы «Монитор Лайт М» (версия 1.03 полная), которая недоступна для общего пользования, устанавливается на персональный компьютер поверочной лаборатории предприятия-изготовителя, отключенный от внешних серверов, и распространяется только среди сертифицированных сервисных центров (региональных представительств), имеющих лицензию на право проведения первичной и периодических поверок расходомера.

ПРИМЕЧАНИЕ. Для поверки расходомеров с модулем обработки ШКСД.408843.005 используется программа «Монитор «ВЗЛЕТ ЭР Лайт М 41.85.15.55» (версия 2.23 полная).

4.2.5. Встроенное ПО расходомера предоставляет возможность перезаписи с помощью специальной программы «Взлет Прог», также имеющей ограничение на распространение, аналогичное изложенному в предыдущем пункте. В случае перезаписи ПО расходомера должна быть проведена его внеочередная поверка.

Таким образом реализуется принцип взаимодействия пользователя с КСЗ, который является одним из составляющих комплекса средств защиты информации.

4.3. Сохранение и восстановление конфигурации расходомера

4.3.1. Программа «Универсальный просмотрщик» позволяет сохранять конфигурационную базу параметров прибора и загружать в него сохраненную конфигурацию. Считывание всей базы параметров возможно в любом режиме работы расходомера. Возможность записи в расходомер параметров из сохраненной ранее конфигурации определяется установленным режимом работы. В режиме РАБОТА невозможна загрузка никаких параметров. В режиме СЕРВИС доступны для записи настройки универсальных выходов, индикации, связи и ряд параметров алгоритма измерения расхода (например, отсечки). В режиме НАСТРОЙКА возможна загрузка в прибор любых параметров из сохраненной конфигурации.

ПРИМЕЧАНИЕ. В случае восстановления или загрузки конфигурационной базы в режиме НАСТРОЙКА необходимо проведение внеочередной поверки прибора.

4.3.2. Операции по сохранению и восстановлению конфигурации могут проводиться на заводе-изготовителе расходомера или сертифицированными сервисными центрами (региональными представительствами), имеющими лицензию на право проведения первичной и периодических поверок расходомера.

Таким образом реализуется принцип надежного восстановления ПО расходомера, который является одним из составляющих комплекса средств защиты информации.

- 4.3.3. Для сохранения конфигурационной базы прибора необходимо выполнить ряд нижеперечисленных операций:
 - в программе «Универсальный просмотрщик» выбрать пункт «Проект» / «Конфигурация» / «Сохранить конфигурацию» (рис.27).

🚺 Универсальный просмотр	щик ModBus -	D:\Progra	am Files\¥zljot\UB	Viewer\
Проект Соединение Графики	и Архивы Се	рвис Окн	ю Помощь	
😅 Открыть	Ctrl+O			
🔚 Сохранить	Ctrl+S			
Закрыть	Ctrl+F4			
Конфигурация	•	📑 Coxpa	нить конфигурацию	na s
Библиотека		на Загруз	зить конфигурацию	
1. Лайт M RTC (пользовател	ьский).vpr			
2. Viewer Aflowt MFT.vpr				
3. Монитор Взлёт ТЭР. vpr				
4. New URSV-311 v.1.0.vpr				
👖 Выход				

Рис.27. Окно «Универсальный просмотрщик».

- в открывшемся окне «**Диалог сохранения конфигурации**» выбрать набор параметров, которые будут прочитаны из прибора, установить флаг «**Прочитать данные перед сохранением**» и нажать кнопку «**Далее**», дождаться окончания считывания (рис.28).

Диалог сохранения конфигураци	и		×
 Измеряемые параметры Серийный номер Диаметр датчика Время Настройки основные Настройки периферии Контрольная информация Индикация Тест 			
Прочитать данные перед сохрана Настройка соединения	знием	Падее \	Prime

Рис.28. Окно «Диалог сохранения конфигурации».

 после окончания считывания всех выбранных параметров станет активной кнопка «Сохранить в файл», нажав которую можно ввести имя файла и сохранить прочитанную конфигурацию (рис.29).

Наименование объекта	Результат операции	18
Границы диапазонов в 0.01% от максимальн	Команда выполнена успешно	
Корректирующие коэффициенты - малый рас	Команда выполнена успешно	
Корректирующие коэффициенты - средний р	Команда выполнена успешно	
Корректирующие коэффициенты - большой р	Команда выполнена успешно	
Верхняя референция	Команда выполнена успешно	
Смещение референции	Команда выполнена успешно	
Установка макс, скорости потока	Команда выполнена успешно	
Серийный номер платы	Команда выполнена успешно	
1ндикация	15	
Маска индикации	Команда выполнена успешно	
Настройки индикации параметров	Команда выполнена успешно	
Период обновления	Команда выполнена успешно	
Контраст	Команда выполнена успешно	
Язык индикации	Команда выполнена успешно	
Отсечка по индикатору	Команда выполнена успешно	
од операции:		
Сохранить в файл		

Рис.29. Окно «Диалог сохранения конфигурации» / «Ход операции».

- 4.3.4. Для загрузки в прибор параметров из сохраненной ранее конфигурации необходимо выполнить следующие действия:
 - в программе «Универсальный просмотрщик» выбрать пункт «Проект»
 / «Конфигурация» / «Загрузить конфигурацию» и выбрать файл конфигурации для загрузки (рис.30).

Рис.30. Окно «Загрузка конфигурации»

- в открывшемся окне «**Диалог загрузки конфигурации**» выбрать набор параметров, которые будут загружены в прибор и нажать кноп-ку «**Далее**» (рис.31).

Диалог загрузки конфигурации	×
🕀 🗌 Измеряемые параметры	
🗄 🗌 Настройки основные	
🗄 🗹 Настройки периферии	
— 🔲 Настройка параметров с	вязи
— 🗌 Установка межбайтовой	задержки
— 🗌 Тип протокола ModBus	
— 🗹 Настройка дискретного в	выхода 1
— 🗹 Тип и связь дискретного	евыхода 1
— 🗹 Настройка дискретного в	выхода 2
— 🗹 Вес импульса 1	
— 🗹 Тип и связь дискретного	евыхода 2
— 🗹 Вес импульса 2	
— 🗌 Запуск режима тестиров	ания частотных выходов
🛄 🗔 Частоты для теста часто	тного выхода
🗄 🗔 Контрольная информация	
🗄 🗌 Индикация	
🥅 Проверка чтением	
Настройка соединения	< <u>Н</u> азад Далее> <u>В</u> ыход

Рис.31. Окно «Диалог загрузки конфигурации»

Процесс загрузки конфигурации в прибор приведен на рис.32.

паименование объекта	гезультат операции
Таинспование обвекта Настройки периферии Настройка дискретного выхода 1 Тип и связь дискретного выхода 2 Вес импульса 1 Тип и связь дискретного выхода 2 Вес импульса 2	Гезультат операции Команда выполнена успешно Команда выполнена успешно Команда выполнена успешно Команда выполнена успешно Команда выполнена успешно
Код операции:	

Рис.32. Окно «Диалог загрузки конфигурации» / «Ход операции».

4.4. Журнал действий пользователя (функция регистрации)

Расходомер имеет защищенный журнал действий пользователя (при наличии часов реального времени). В этом журнале фиксируются изменения всех параметров, за исключением настроек интерфейса связи и настроек индикации, а также создаются записи при смене режима работы расходомера, при изменении даты/времени в приборе и при обновлении встроенного программного обеспечения.

Журнал действий пользователя имеет размер 3000 записей и является не перезаписываемым. При его заполнении дальнейшая модификация настроечных и калибровочных параметров (т.е. всех, кроме настроек связи и индикации) становится невозможной: при попытке записи по протоколу ModBus прибор возвращает код 4 («Ошибка доступа»). Управление константой преобразования частотного выхода №1 с помощью перемычек J1 и J2 так же блокируется.

Запись в журнале действий пользователя имеет следующий формат:

- время фиксации действий пользователя по встроенным часам реального времени в UNIX-формате с точностью до секунды;
- идентификатор типа действия или модифицируемого параметра;
- значение параметра перед изменением;
- значение параметра после изменения.

Записи журнала действий пользователя доступны для чтения по протоколу ModBus в любом режиме работы прибора с помощью сервисной программы «Чтение журналов действий пользователя».

Таким образом реализуется функция регистрации, которая является одной из составляющих комплекса средств защиты информации.

ПРИЛОЖЕНИЕ А. Типовые значения установочных параметров

Таблица А.1

	Расхо	домер впенного потока	Расход для реверсия	цомер зного потока	
Параметр	Унив. выход №1 (XT2) *	Унив. выход №2 (XT1) **	Унив. выход №1 (XT2) *	Унив. выход №2 (XT1) **	
1. Режим работы	Частотный	Частотный	Частотный	Логический	
2. Назначение	Расход прямой	Расход прямой	Расход по модулю	Направление потока для теплоучета	
 Константа пре- образования 	по табл. А.2	по табл. А.3	по табл. А.2		
 Отсечки снизу по расходу 	0,001Q _{макс}	0,001Q _{макс}	0,001Q _{макс}		
5. Максимальная частота	100 Гц (при ½ Q _{наиб})****	500 Гц (при Q _{наиб})	100 Гц (при ½ Q _{наиб})****		
6. Уровень сигнала	Низ	вкий	Низкий	Низкий ***	
7. Время инерции				10 мин.	
8. Режим работы оконечного каскада	Акти	вный	Актие	зный	

- * при типовых значениях установочных параметров выходов расходомера и типовой настройке тепловычислителей «ВЗЛЕТ ТСРВ» к универсальному выходу №1 расходомера подключаются тепловычислители исполнений TCPB-026(М), -033, -034, -043 (см. табл.А.2), а к универсальному выходу №2 тепловычислители исполнений TCPB-024(М), -025, -027, -042 (см. табл.А.3). Допускается тепловычислители исполнений TCPB-024(М), -025, -027, -042 подключать к выходу №1 расходомера, установив в тепловычислителе соответствующее значение константы преобразования (см. табл.А.2);
- ** при типовых значениях установочных параметров универсальный выход №2 расходомера для реверсивного потока может использоваться для подключения к логическому входу тепловычислителя, настроенного на прием сигнала реверса;
- *** при прямом направлении потока;
- **** максимальное значение частоты на универсальном выходе №1 для заданных по умолчанию констант преобразования формируется при значении расхода, равном половине наибольшего расхода Q_{наиб} (см. часть I настоящего руководства по эксплуатации). При значении расхода выше заданного, расходомер выдает сигнал о нештатной ситуации: Ошибка выхода 1 (!1).

Таблица А.2. Типовые значения константы преобразования для универсального выхода № 1

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Гмакс, Г ц							100						
Константа пре- образования, имп/л	200	80	50	32	20	12,5	8	5	3,2	2	0,8	0,5	0,2

Таблица А.3. Типовые значения константы преобразования для универсального выхода №2

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Гмакс, Г ц							500						
Константа пре- образования, имп/л	500	200	125	80	50	32,5	20	12,5	8	5	2	1,25	0,5

Таблица А.4. Значения расходов для разных типоразмеров, соответствующие типовому значению отсечки

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Отсечка, м ³ /час	0,003	0,007	0,011	0,018	0,029	0,045	0,071	0,120	0,181	0,283	0,637	1,132	2,547

Eсть ссылки на документы: - rel_er.xxxLFM_doc3.0

re2_er.xxx_doc3.4

