

РАСХОДОМЕР-СЧЕТЧИК ЭЛЕКТРОМАГНИТНЫЙ

ВЗЛЕТ ЭР Лайт М

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Часть II

ШКСД.407212.006 РЭ1

Россия, Санкт-Петербург

Система менеджмента качества АО «Взлет» сертифицирована на соответствие ГОСТ Р ИСО 9001-2015 (ISO 9001:2015) органом по сертификации ООО «Тест-С.-Петербург», на соответствие СТО Газпром 9001-2018 органом по сертификации АС «Русский Регистр»

АО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ,198097 E-mail: mail@vzljot.ru

www.vzljot.ru

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ	5
1.1. Сервисное программное обеспечение	5
1.2. Порядок подключения к ПК	
1.3. Уровни доступа к установочным параметрам расходомера	6
2. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ЛАЙТ М RTC (ПОЛЬЗОВАТЕЛЬСКИЙ) ВЕРСИЯ 2.X.VPR»	8
2.1. Программное подключение ПК к расходомеру	
2.2. Чтение и запись установочных параметров	10
2.3. Настройка параметров измерения расхода	
2.4. Настройка параметров универсальных выходов	
2.5. Настройка параметров связи с прибором	
2.6. Настройка параметров индикатора	19
2.7 Установка даты и времени	20
2.8. Отображение измеряемых параметров	21
2.9. Отображение метрологических параметров	
2.10. Отображение диагностируемых ошибок и НС	24
3. КОМПЛЕКС СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ	
3.1. Дискреционный принцип контроля доступа	26
3.2. Взаимодействие пользователя с КСЗ	26
3.3. Сохранение и восстановление конфигурации расходомера	27
3.4. Журнал действий пользователя (функция регистрации)	31
4. РАБОТА С NFC МОНИТОРОМ ДЛЯ ОС ANDROID	32
4.1. Общие сведения о приложении	32
4.2. Пользовательский интерфейс	32
4.2.1. Индикация соединения с расходомером	32
4.2.2. Управление окнами приложения	33
4.2.3. Окно «О приборе»	36
4.2.4. Окно «Текущие измерения»	37
4.2.5. Окно «Выходы»	38
4.2.6. Окно «Настройки связи»	39
4.2.7. Окно «Доп. настройки»	39
4.2.8. Окно «Диагностика»	40
4.2.9. Окно «Экспорт / Архивы»	40
4.2.10. Окно «О программе»	43
ПРИЛОЖЕНИЕ А. ТИПОВЫЕ ЗНАЧЕНИЯ УСТАНОВОЧНЫХ	
ПАРАМЕТРОВ	44

Настоящий документ распространяется на расходомер-счетчик электромагнитный ВЗЛЕТ ЭР Лайт М и предназначен для ознакомления с приборным сервисным программным обеспечением и порядком работы с ним.

В связи с проводимыми конструктивными доработками и усовершенствованиями в расходомере возможны отличия от настоящего руководства, не влияющие на метрологические характеристики и функциональные возможности изделия.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

DN - диаметр номинальный;

КСЗ - комплекс средств защиты;

НС - нештатная ситуация;

ОС - операционная система;

ПК - персональный компьютер;

ПО - программное обеспечение.

1. УПРАВЛЕНИЕ РАСХОДОМЕРОМ

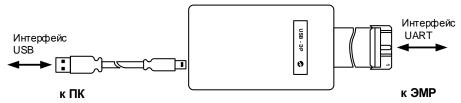
1.1. Сервисное программное обеспечение

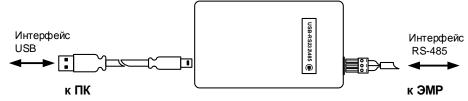
Управление работой расходомера возможно с помощью персонального компьютера, на котором установлена программа «Универсальный просмотрщик», содержащая пакет мониторов, в том числе Монитор Лайт М (RTC), версия 2.3, рабочий файл на ПК – Лайт М RTC (пользовательский) версия 2.X.vpr.

Программа «Универсальный просмотрщик» доступна для загрузки с сайта www.vzljot.ru.

ПРИМЕЧАНИЕ. В процессе установки на ПК программы «Универсальный просмотрщик» следует также согласиться с установкой драйверов последовательного интерфейса USB.

1.2. Порядок подключения к ПК


Подключение расходомера к персональному компьютеру выполняется по последовательному интерфейсу USB через один из адаптеров: «ВЗЛЕТ АС USB-ЭР» — для всех исполнений расходомеров (кроме ЭРСВ-4X8 X), либо «ВЗЛЕТ АС USB-RS232\485» — для исполнений расходомеров с интерфейсом RS-485 (рис.1).


Рис.1. Средства управления расходомером ВЗЛЕТ ЭР».

Концы сигнальных кабелей присоединяются к соответствующему разъему ПК, разъемам адаптера «ВЗЛЕТ АС USB-ЭР» (адаптера «ВЗЛЕТ USB-RS232\485») и к разъему расходомера (рис.2).

а) подключение адаптера «ВЗЛЕТ USB-ЭР»

б) подключение адаптера «B3ЛЕТ USB-RS232\485»

Рис.2. Схемы подключения адаптеров к ПК и к расходомеру.

При выполнении подключений следует руководствоваться эксплуатационной документацией на адаптеры и на расходомер.

ПРИМЕЧАНИЕ. В расходомере исполнения ЭРСВ-4X8Ф использование интерфейса RS-485 возможно только для чтения архивов.

1.3. Уровни доступа к установочным параметрам расходомера

1.3.1. Возможности пользователя при управлении расходомером определяются установленным в нем одними трех уровней доступа к установочным параметрам. Уровни доступа обозначаются как режимы НАСТРОЙКА, СЕРВИС и РАБОТА.

Назначение каждого режима:

- НАСТРОЙКА режим настройки и поверки;
- СЕРВИС режим подготовки к эксплуатации;
- РАБОТА эксплуатационный режим (режим пользователя).
- 1.3.2. Режимы задаются нажатием на одну из кнопок включения режима на модуле обработки (см. рис.Б.14 части I настоящего руководства).

Соответствие комбинаций нажатия кнопок устанавливаемым режимам приведено в табл.1, где «+» – нажатие соответствующей кнопки.

Таблица 1

Наименование ре-	Кнопки включ	Назначение режима	
жима	<НАСТРОЙКА>	<СЕРВИС>	Tractic forms
НАСТРОЙКА	+		Режим настройки и поверки
СЕРВИС		+	Режим подготовки к эксплуатации
РАБОТА			Эксплуатационный режим

ПРИМЕЧАНИЕ. Переход в режим РАБОТА происходит после отключения и последующего включения электропитания, либо по истечении **16 часов**, если только не была снова нажата кнопка включения режима.

- 1.3.3. В режиме НАСТРОЙКА доступны все установочные параметры прибора. В этом режиме производится настройка прибора в процессе его изготовления и юстировка (калибровка) при поверке.
- 1.3.4. В режиме СЕРВИС возможна модификация:
 - отсечек по измерению;
 - параметров работы фильтра и автомата установки расхода;
 - параметров и режимов работы универсальных выходов;
 - параметров индикации.
- 1.3.5. В режиме РАБОТА недоступны никакие настройки.
- 1.3.6. Модификация установочных параметров, доступных в режиме РАБОТА и СЕРВИС, не влияет на метрологические характеристики прибора и может производиться при необходимости на объекте. Параметры калибровки в режимах РАБОТА и СЕРВИС недоступны.
- 1.3.7. Расходомеры исполнений ЭРСВ-4Х8Ф настраиваются только в заводских условиях в соответствии с картой заказа.

2. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ «МОНИТОР ЛАЙТ М RTC (пользовательский) ВЕРСИЯ 2.X.vpr»

2.1. Программное подключение ПК к расходомеру

2.1.1. Запустить на ПК программу «Универсальный просмотрщик». После чего в появившейся строке меню программы (рис.3) выбрать **Проект\Открыть\Projects** и запустить файл «Лайт М RTC (пользовательский) версия 2.X.vpr» (далее – «Монитор»).

Рис.3. Вид строки меню программы «Универсальный просмотрщик».

ПРИМЕЧАНИЕ. Файл «Лайт М RTC (пользовательский) версия 2.X.vpr» также можно запустить непосредственно из папки его хранения на ПК (например, возможный путь к папке с файлом по умолчанию c:\Program Files (x86)\Vzljot\UBViewerProjects\Projects\).

На экране ПК начнется отображение главного окна программы «Монитор» (рис.4), содержащее вкладки с наборами измерительных и установочных параметров.

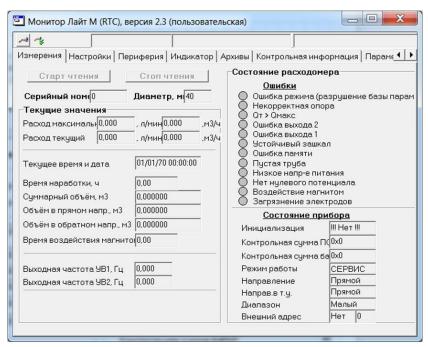


Рис.4. Вид главного окна программы «Монитор Лайт М (RTC), версия 2.3 (пользовательская)».

2.1.2. Перейти на вкладку **Параметры программы** в главном окне программы «Монитор» (рис.5) и удостовериться, что для параметра **Адрес** установлено значение 1 (как при выпуске из производства).

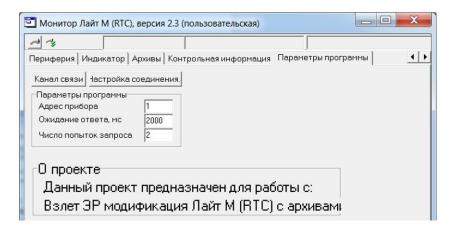


Рис.5. Вид вкладки «Параметры программы».

Изменение остальных установочных параметров рекомендуется выполнять только опытным пользователям.

Нажать кнопку **<Настройка соединения>** (рис.5). В открывшемся окне **Менеджер настроек** (рис.6) установить требуемые значения параметров связи:

- Выбор транспорта тип интерфейса для связи (RS-485);
- ◆ **COM-порт** обозначение виртуального COM-порта ПК, который автоматически определяется при подключении к нему адаптера;
- ◆ **Скорость обмена** по умолчанию в расходомере установлено значение 19200 бит/с.

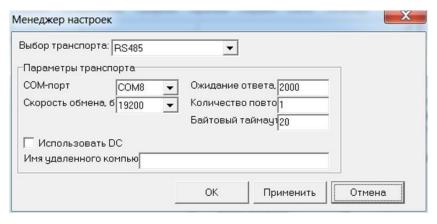


Рис.6. Вид окна «Менеджер настроек».

После завершения изменения настроек нажать кнопку < OK >.

2.1.3. Для установления связи ПК с расходомером нажать кнопку **<Канал связи>** во вкладке **Параметры программы**, либо кнопку на панели меню основного окна программы «Монитор». При удачном завершении операции в строке состояния «Монитора» должны появиться сообщения **Канал связи открыт** и **Команда выполнена успешно**.

При отсутствии связи с расходомером в строке состояния основного окна программы «Монитор» будут индицироваться сообщения. Канал связи открыт, Прибор не отвечает.

В этом случае следует закрыть канал связи, повторно нажав кнопку **<Канал связи>**. Далее следует проверить правильность подключения сигнальных кабелей к ПК и расходомеру, а также корректность значений параметров **Адрес**, **Выбор транспорта**, **СОМ-порт**, **Скорость обмена**.

После чего следует повторить попытку установления связи с расходомером.

2.2. Чтение и запись установочных параметров

- 2.2.1. После программного подключения ПК к расходомеру во всех вкладках главного окна программы «Монитор» становятся активными кнопки, позволяющие запускать процесс чтения значений измерительных и установочных параметров расходомера: **Старт чтения**>, **Прочитать все**>, **Чтение текущих значений**>. Нажатие на соответствующую кнопку приводит к обновлению значений параметров, индицируемых во вкладке.
- 2.2.2. Запись в расходомер значений установочных параметров после их редактирования производится по нажатию кнопки либо кнопки Записать>.

ПРИМЕЧАНИЕ. Рекомендуется после завершения записи значений параметров выполнить операцию их чтения с целью проверки корректности ввода данных.

2.3. Настройка параметров измерения расхода

Установочные параметры измерения расхода находятся во вкладке **Настройки** главного окна программы «Монитор» в области **Настройки измерения расхода** (рис.7).

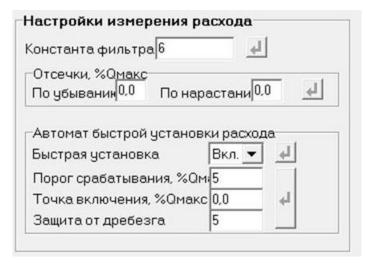


Рис.7. Вид области «Настройки измерения расхода».

Назначения установочных параметров расхода.

- ◆ Константа фильтра время установления сигнала (длительность переходного процесса) на выходе расходомера. Возможные значения параметра приведены в табл.2.
- ◆ Отсечки, %Qмакс По убыванию (По нарастанию) пороговые значения расхода, ниже которых (при изменении расхода в большую и меньшую сторону соответственно) прекращается накопление объема и выдача импульсов на универсальном выходе. При этом индицируется нулевое значение расхода. Нештатные ситуации (НС) не фиксируются.

В расходомере реверсивного исполнения отсечки срабатывают как при положительном, так и при отрицательном направлении потока. Сигнал направления потока также изменяется с учетом установленных отсечек.

При выпуске из производства для каждой из отсечек устанавливается типовое значение, приведенное в табл.А.4 приложения А.

Область **Автомат быстрой установки расхода** содержит параметры, позволяющие изменять настройки алгоритма быстрой установки расхода при его резком изменении.

- ◆ Быстрая установка включение/отключение алгоритма быстрой установки;
- ◆ Порог срабатывания, %Qмакс разность расходов в процентах от максимального, сигнализирующая о необходимости включения алгоритма быстрой установки расхода.
- ◆ Точка включения, %Qмакс значение расхода в процентах от максимального, выше которого будет работать алгоритм;

◆ Защита от дребезга — время, в течение которого должно происходить срабатывание алгоритма. Указывается в условных единицах, одна единица соответствует 1/10 секунды.

При выпуске из производства устанавливается значение константы фильтра сигнала расхода равное 6 и включается алгоритм установки расхода с типовыми значениями параметров. Справочное время реакции прибора на изменение расхода при различных комбинациях параметров указано в табл.2.

Таблица 2

Константа фильтра	Время установления значения расхода, с						
сигнала расхода	Алгоритм включен	Алгоритм отключен					
0	1	1,5					
1	2	3					
2	3	6					
3	5	12					
4	6	24					
5	6	48					
6	6	96					
7	7	192					
8	8	384					

По вопросам выбора параметров фильтра и алгоритма установки расхода обращаться к изготовителю.

Область **Настройки определения пустой трубы** содержит установочные параметры при работе с жидкостями, отличными по электрической проводимости от водопроводной воды.

Рекомендуется провести коррекцию значения порога срабатывания критерия «Пустая труба» по следующей методике:

- убедиться, что трубопровод целиком заполнен измеряемой жидкостью;
- во вкладке **Настройки определения пустой трубы** (рис.8) прочитать значения параметров **Эталонный код ПТ** (например, 75 условных единиц) и **Текущий код** (например, 25 условных единиц);

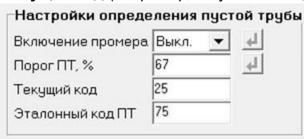


Рис.8. Вид области «Настройки определения пустой трубы».

- рассчитать новое пороговое значение сигнала для измеряемой жидкости по формуле:

$$\Pi = \frac{K_{T} + 0.5 \cdot (K_{9} - K_{T})}{K_{9}} \cdot 100\%,$$

где Π – новое пороговое значение сигнала на пустом трубопроводе в процентах;

 K_3 — эталонное (калибровочное) значение зондирующего сигнала (значение параметра **Эталонный код ПТ**);

 K_T — текущее (измеренное) пороговое значение сигнала (значение параметра **Текущий код**);

- записать рассчитанное по формуле новое пороговое значение сигнала на пустом трубопроводе для параметра **Порог ПТ**, %.

2.4. Настройка параметров универсальных выходов

2.4.1. Установочные параметры универсальных выходов находятся во вкладке **Периферия** главного окна программы «Монитор» в области **Настройки универсальных выходов** (рис.9).

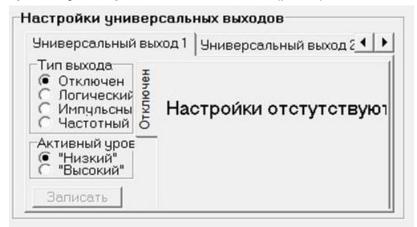


Рис.9. Вид области «Настройки универсальных выходов».

Вкладки Универсальный выход 1 и Универсальный выход 2 имеют одинаковую структуру и содержат установочные параметры универсальных выходов №1 и №2 соответственно. При этом часть установочных параметров располагается во вложенной (дополнительной) вкладке, наименование и содержимое которой изменяется в соответствии с установленным режимом работы выхода.

Режим работы универсального выхода (**Частотный**, **Импульсный**, **Логический**) задается в области **Тип выхода**. Для этого следует установить переключатель перед требуемым наименованием режима и нажать кнопку **<Записать>**.

2.4.2. В частотном режиме (установлено значение **Тип выхода Частот- ный**) на универсальный выход поступает импульсная последовательность типа «меандр» со скважностью 2 и нормированным весом импульса. Частота следования импульсов пропорциональна среднему объемному расходу, измеренному в течение предыдущих 80 мс. Предельная частота — 500 Гц.

При работе в частотном режиме задаются значения параметров: **Константа преобразования** (имп/л), **Максимальная частота** (панель **Частотный выход**) и уровень сигнала (**Низкий**, **Высокий**) в области **Активный уровень** (рис.10).

Рис.10. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Частотный».

Установочные параметры во вкладке Частотный выход.

◆ Константа преобразования. По умолчанию при выпуске расходомеров из производства для универсального выхода №1 устанавливается частотный режим работы и значение параметра Константа преобразования, указанное в Приложении А (может устанавливаться в пределах от 0,0001 до 9999 имп/л).

Для определения значения параметра **Константа преобразования** с учетом максимального значения расхода в трубопроводе, где будет устанавливаться расходомер, а также частотных свойств приемника импульсного сигнала можно воспользоваться формулой:

Константа преобразования
$$\leq \frac{3.6 \cdot F}{Q_{\text{макс}}} = \frac{1.8 \cdot 10^3}{Q_{\text{макс}} \cdot \tau_{\text{и}}}$$
 [имп/л] ,

где $Q_{\text{макс}}$ – максимальный эксплуатационный расход в трубопроводе, $M^3/4$:

 F – максимально допустимая для приемника частота следования импульсов на выходе расходомера, Гц;

 $\tau_{\text{и}} = 0.5 \cdot \text{Ти} - \text{минимально допустимая для приемника длительность им$ пульсов расходомера, мс;

Ти – период следования импульсов на выходе расходомера, мс.

Назначение выхода в частотном режиме задается установками в области Связь.

- ◆ Расход по модулю импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе при любом направлении потока.
- ◆ Расход прямой импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при прямом направлении потока.
- ◆ Расход обратный импульсная последовательность с частотой следования, пропорциональной измеренному значению расхода, формируется на выходе только при обратном направлении потока.

Также задаются значения следующих параметров.

- ◆ Максимальная частота частота, соответствующая максимальному расходу в данном трубопроводе. Превышение на выходе значения параметра Максимальная частота диагностируется в расходомере как нештатная ситуация, т.е. заданное для данного выхода значение константы преобразования некорректно.
- ◆ Активный уровень это уровень сигнала (Высокий или Низкий), соответствующий наличию импульса. Электрические параметры уровней сигнала приведены в Приложении В части I настоящего руководства.
- 2.4.3. В импульсном режиме (установлено значение **Тип выхода Импульсный**) выходы могут использоваться для вывода результатов измерения в виде импульсной последовательности типа «меандр» со скважностью 2 и нормированным весом импульсов.

В импульсном режиме работы в течение секунды на выход поступает пачка импульсов, количество которых с учетом веса импульса соответствует объему, измеренному за предыдущую секунду. Максимальная частота следования импульсов, как и в частотном режиме, не превышает 500 Гц.

Параметры настройки выходов для импульсного режима работы находятся во вкладке **Импульсный выход** (рис.11).

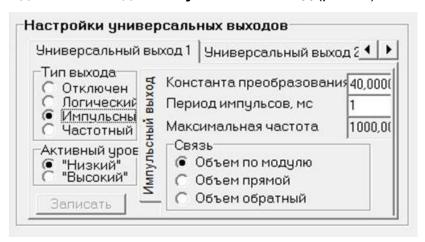


Рис.11. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Импульсный».

При работе в импульсном режиме задаются значения параметров **Период импульсов**, **Константа преобразования** (возможен расчет значения по той же формуле, что и для частотного режима), а также **Активный уровень**.

◆ Период импульсов – период следования импульсов в пачке; может быть задано значение от 2 до 1000 мс, т.е. частота следования импульсов от 500 до 1 Гц.

Назначение выхода в импульсном режиме задается установками в области **Связь**.

- ◆ Объем по модулю импульсы, количество которых пропорционально измеренному значению объема, поступают на выход при любом направлении потока.
- ◆ Объем прямой импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при прямом направлении потока.
- ◆ Объем обратный импульсы, количество которых пропорционально измеренному значению объема, поступают на выход только при обратном направлении потока.
- 2.4.4. В логическом режиме (установлено значение **Тип выхода Логический**) на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала, а отсутствию события (или иному его состоянию) другой уровень сигнала.

Параметры настройки выходов для логического режима работы находятся во вкладке **Логический выход** (рис.12).

Программно для логического режима задается его назначение и значение параметра **Активный уровень**.

Рис.12. Вид вкладки «Универсальный выход 1» при установленном значении «Тип выхода Логический».

Назначение выхода в логическом режиме задается установками в области **Событие**.

- ◆ Обратное направление потока уровень сигнала на выходе изменяется без задержки при изменении направления потока в трубопроводе.
- ◆ Ошибка Q > Qмакс уровень сигнала на выходе изменится, если измеренное значение расхода превысит значение Qмакс для данного DN расходомера.
- ◆ Любая ошибка уровень сигнала на выходе изменится при возникновении любой нештатной ситуации, диагностируемой прибором.

- ◆ Пустая труба уровень сигнала на выходе изменится, если включенный алгоритм определения заполнения трубопровода сигнализирует о его неполном заполнении.
- ◆ Обр. направ. потока для теплоучета изменение уровня сигнала на выходе произойдет только, если длительность времени изменения направления потока превысит заданное время инерции; значение параметра Т инерции потока может быть установлено в диапазоне от 0 до 60 минут; значение параметра Активный уровень соответствует прямому направлению потока.
- ◆ Флаг наличия питания ("Высокий") при наличии напряжения питания на выходе формируется Высокий уровень сигнала, при напряжении питания ниже допустимого напряжение на выходе отсутствует.
- 2.4.5. В расходомере предусмотрена возможность проверки работоспособности универсальных выходов в частотном режиме. Установочные параметры для проведения тестирования находятся во вкладке **Тест выходов,** (рис.13), переход к которой производится нажатием кнопки

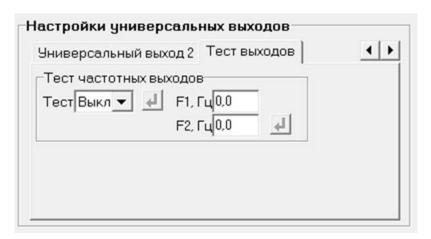


Рис.13. Вид вкладки «Тест выходов».

Задаваемая тестовая частота **F1** и **F2** для обоих универсальных выходов не должна превышать значения 500 Гц.

После запуска процедуры тестирования (**Тест Вкл.**) кнопкой следует измерить частоту на универсальных выходах с помощью частотомера.

ПРИМЕЧАНИЕ. Для корректного измерения частоты универсальные выходы должны быть переведены в активный режим работы (см. часть I настоящего руководства).

2.5. Настройка параметров связи с прибором

Для изменения настроек связи расходомера и ПК в области **Настройки связи** во вкладке **Настройки** (рис.14) могут быть установлены следующие параметры:

- ◆ Сетевой адрес целое число от 1 до 247;
- Задержка RTS задержка ответа по RS-интерфейсу, мс;
- ◆ Скорость скорость обмена в сети (по умолчанию 19200 бод);
- М/б задержка межбайтовая задержка, мс;
- ◆ Протокол сетевой протокол (по умолчанию RTU ModBus).

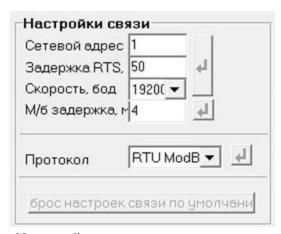


Рис.14. Вид области «Настройки связи».

При нажатии на кнопку **Сброс настроек связи по умолчанию**> восстанавливаются заводские настройки связи.

ВНИМАНИЕ! При изменении значений параметров «Сетевой адрес» и «Скорость» во вкладке «Настройки связи» необходимо продублировать эти настройки во вкладке «Параметры программы».

2.6. Настройка параметров индикатора

Настройки отображаемых параметров на дисплее расходомера исполнений ЭРСВ-5XXX содержатся во вкладке **Индикатор**, (рис.15).

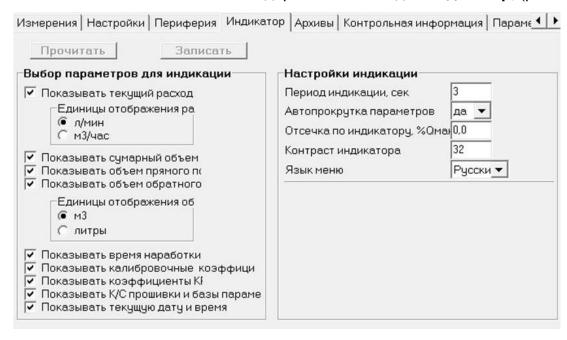


Рис.15. Вид вкладки «Индикатор».

Включение/отключение отображения требуемых параметров осуществляется установкой флажка в соответствующей строке списка в области **Выбор параметров для индикации**

Назначение параметров области Выбор параметров для индикации.

- ◆ Показывать текущий расход отображение текущего измеряемого расхода. Дополнительно можно выбрать размерность индикации л/мин или м³/час.
- ◆ Показывать суммарный объем отображение суммарного объема.
- ◆ Показывать объем прямого потока отображение объема прямого направления потока.
- ◆ Показывать объем обратного потока отображение объема обратного направления потока. Дополнительно можно выбрать размерность индикации объемов литры или м³.
- ◆ Показывать время наработки отображение общего времени работы прибора.
- ◆ Показывать калибровочные коэффициенты К, Р отображение метрологических коэффициентов К и Р. Индицируются только коэффициенты используемого диапазона.
- ◆ Показывать коэффициенты КР1, КР2 отображение параметра Константа преобразования для первого и второго универсального выхода.

◆ Показывать К/С прошивки и базы параметров — отображение контрольных сумм ПО и базы настроек прибора.

Параметры группы Настройки индикации.

- ◆ Период индикации период времени циклического отображения параметров на индикаторе, устанавливается в диапазоне от 1 до 100 секунд.
- ◆ Автопрокрутка параметров режим циклического отображения параметров на индикаторе.
- ◆ Отсечка по индикатору, %Qмакс граничное отображаемое значение расхода в процентах от максимального, ниже которого будет отображаться нулевое значение, а накопление объема и выдача импульсов продолжаются.
- ◆ **Контраст индикатора** контрастность отображения символов, изменяется в пределах от 8 до 40 условных единиц.
- ◆ Язык меню язык отображаемого меню Русский или Английский.

2.7 Установка даты и времени.

Установка даты и приборного времени в расходомере возможна в любом режиме: НАСТРОЙКА, СЕРВИС или РАБОТА. Установка производится во вкладке **Настройки** (см. рис.16):

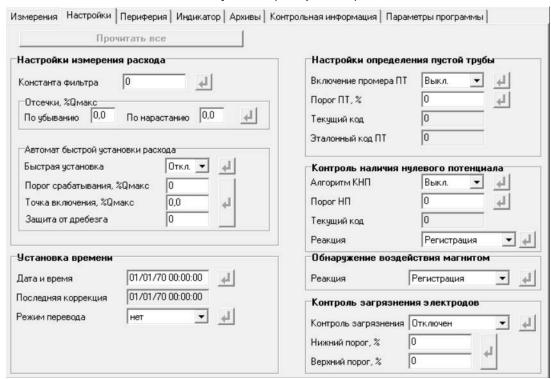


Рис.16. Вид вкладки «Настройки».

Формат установки даты: ДД/ММ/ГГ. Формат установки приборного времени: ЧЧ:ММ:СС. Глубина коррекции времени имеет ограничение и зависит от периода времени, прошедшего с момента предыдущей коррекции. Записать можно время, которое отличается от текущего

приборного времени не более, чем на $\Delta T = 5$ сек х N, где N – число дней, прошедших с даты предыдущей коррекции.

2.8. Отображение измеряемых параметров

Текущие значения измеряемых параметров отображаются во вкладке **Измерения** основного окна программы «Монитор» в области **Текущие значения**. После запуска программы «Монитор» отображаются нулевые значения измеряемых параметров (рис.17). Для начала индикации текущих измеренных значений необходимо нажать кнопку **<Старт чтения>**.

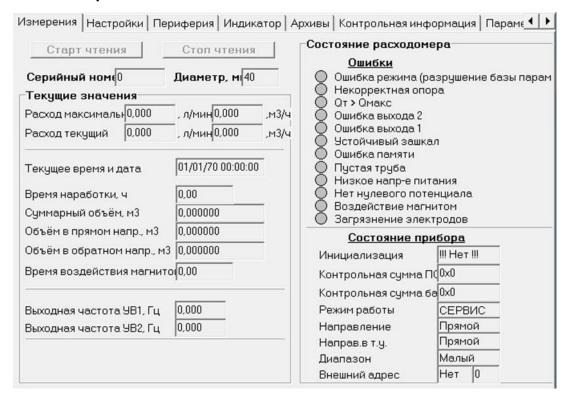


Рис.17. Вид вкладки «Измерения».

Параметры в области Текущие значения.

- ◆ Расход максимальный максимальный объемный расход, значение записывается в память расходомера при выпуске из производства в соответствии со значением DN первичного преобразователя (л/мин, м³/ч).
- ◆ Расход текущий объемный расход при любом направлении потока (л/мин, м³/ч).
- ◆ Время наработки продолжительность работы расходомера (ч).
- ◆ Суммарный объем алгебраическая сумма (с учетом знака) значений объема при прямом и обратном направлении потока (м³).
- ◆ Объем в прямом напр. объем при прямом направлении потока, учитывается со знаком плюс (м³).

- ◆ Объем в обратном напр. объем при обратном направлении потока, учитывается со знаком минус (м³).
- ◆ Выходная частота УВ1 (УВ2) частота на универсальном выходе 1 и универсальном выходе 2 (Гц).

Индицируемые параметры области **Состояние расходомера** в группе **Состояние прибора**.

- ◆ Инициализация степень готовности прибора к работе. В случае отображения символов, отличных от Все ОК, прибор необходимо отправить на ремонт.
- ◆ Контрольная сумма ПО контрольная сумма ПО расходомера.
- ◆ Контрольная сумма базы контрольная сумма базы настроечных параметров прибора.
- ◆ Режим работы текущий режим работы прибора.
- ◆ Направление направление потока контролируемой жидкости в трубопроводе.
- ◆ **Направ.** в т.у. направление потока контролируемой жидкости в трубопроводе с учетом времени инерции.
- ◆ Диапазон диапазон измеряемого расхода (Большой, Средний или Малый).

2.9. Отображение метрологических параметров

Просмотр основных метрологических и части функциональных параметров прибора возможен во вкладке **Контрольная информация** (рис.18):

П	рочитать все			
Серийный номер	1254217 J	Диаметр, мм 50	Эталонные оп	орные уровни
Границы диапазо	нов 20макс	•	Верхняя опора	1762378
0,00 - 100,00		00 100,00 -100,00	Смещение	-131
Малый расход	Средний расх	од Большой расход	Текущие опор	ные уровни
K0+ 0,4000000	K1+ 0,4000000	K2+ 0,4000000	Верхняя опора	1762378
P0+ 0,0000000	P1+ 0,0000000	P2+ 0,0000000	Смещение	-131
K0- 0,4000000	K1- 0,4000000	K2- 0,4000000		1
P0- 0,0000000	P1- 0,0000000	P2- 0,0000000	Сопротивлени	е катушек
Информация о де	ействиях пользов	ателя	В исходное, Ом	29,4
	10в в режим "Сервис	T-	R текущее, Ом	30,5
	дов в режим "Поверк			
		17		
	й в сервисном журна	17		
Количество записе	й в поверочном в жур	онале ''		
Информация о пр	оограммном обес	печении		
	исполняемого кода	0xCA83		

Рис.18. Вид вкладки «Контрольная информация».

В области **Границы диапазонов, %Qмакс** отображаются установленные в расходомере диапазоны расхода в процентах от его максимального значения. И далее — метрологические коэффициенты К и Р, отображаемые в областях **Малый расход**, **Средний расход** и **Большой расход**.

В области **Информация о действиях пользователя** содержится информация о числе переходов в режимы СЕРВИС и ПОВЕРКА, а также общее количество изменений в сервисном и поверочном журналах. Получить доступ к содержимому сервисного и поверочного журнала возможно с помощью соответствующего ПО, размещенного на сайте по адресу www.vzljot.ru.

В области **Информация о программном обеспечении** отображается контрольная сумма ПО расходомера.

Значения параметров, отображаемые в областях **Эталонные** опорные уровни, **Текущие опорные уровни**, **Сопротивление катушек** предназначены для диагностирования неисправностей расходомера специалистами сервисных организаций.

2.10. Отображение диагностируемых ошибок и НС

2.10.1. Список ошибок (неисправностей) и нештатных ситуаций, диагностируемых в работе расходомера, содержится во вкладке **Измерения** в области **Состояние расходомера** (рис.19).

Cocı	гояние расходомера
	<u>Ошибки</u>
0	Ошибка режима (разрушение базы парам
0	Некорректная опора
Q	Qt > Qmakc
Q	Ошибка выхода 2
Q	Ошибка выхода 1
Q	Устойчивый зашкал
0	Ошибка памяти
0	Пустая труба
Q	Низкое напр-е питания
0	Нет нулевого потенциала
Q	Воздействие магнитом
0	Загрязнение электродов

Рис.19. Вид области «Состояние расходомера».

При диагностировании ошибки или НС перед ее соответствующим обозначением в списке начинается индикация символа ● (круга красного цвета). В расходомерах исполнений ЭРСВ-5ХХХ сообщения об ошибках и НС также отображаются и на индикаторе в виде символа «!» и буквенно-цифрового кода.

Общий перечень ошибок и нештатных ситуаций приведен в табл.3.

Таблица 3

Ви	д индикации	
На индикаторе		Содержание неисправности, нештатной ситуации
! И	Ошибка режима (разрушение базы параметров)	Повреждение базы установочных параметров прибора
! 0	Некорректная опора	Нет промера опорного сопротивления, аппаратная неисправность
! Q	Qт>Qмакс	Текущее значение расхода превышает значение Qмакс для данного DN
! 2	Ошибка выхода 2	Некорректное значение Константы преобразования по выходу 2
! 1	Ошибка выхода 1	Некорректное значение Константы преобразования по выходу 1
! 3	Устойчивый зашкал	Уровень входного сигнала выше допустимого
! E	Ошибка памяти	Неисправна микросхема памяти EEPROM
!П	Пустая труба	Значение сопротивления выше заданного (пустая труба)
! H	Низкое напр-е питания	Питание прибора ниже допустимого
! K	Нет нулевого потенциала	Не подключены заземляющие проводники
! M	Воздействие магнитом	Попытка внешнего воздействия на расходомер постоянным магнитом
! Э	Загрязнение элек- тродов	Критическое загрязнение электродов

- 2.10.2. При появлении на индикаторе расходомера символов !O, !E, !И или сообщений на дисплее ПК Некорректная опора, Ошибка памяти, Ошибка режима (разрушение базы параметров) прибор необходимо отправить в ремонт.
- 2.10.3. В случае индикации других символов и/или отсутствия измерительной информации следует проверить:
 - наличие и соответствие нормам напряжения питания на входе расходомера и источника вторичного питания;
 - надежность подсоединения цепей питания;
 - наличие жидкости и ее движения в трубопроводе;
 - отсутствие скопления газа в месте установки расходомера;
 - отсутствие превышения температуры окружающей среды в месте установки расходомера;
 - корректность значений параметров **Константа преобразования**, отсечек по расходу и других установочных параметров; при необходимости изменить их значения.

Если проведенные мероприятия не приводят к восстановлению нормальной работы расходомера, следует обратиться в сервисный центр (региональное представительство) или к изготовителю изделия для определения возможности его дальнейшей эксплуатации.

ПРИМЕЧАНИЕ. В случае возникновение НС **Ошибка памяти** измерение расхода и накопление объемов продолжается, но становится невозможно изменение параметров расходомера.

- 2.10.4. Если при наличии движения жидкости в контролируемом трубопроводе в приемнике выходного импульсно-частотного сигнала расходомера не меняется значение измеряемого объема, необходимо проверить соответствие режима работы оконечного каскада универсального выхода расходомера режиму входа приемника сигнала (см. часть I настоящего руководства).
- 2.10.5. Расходомер ВЗЛЕТ ЭР Лайт М по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится в специализированных мастерских, либо на предприятии-изготовителе.

3. КОМПЛЕКС СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

В расходомерах ВЗЛЕТ ЭР Лайт М реализован комплекс системы защиты информации, согласованный с ФСТЭК России и имеющий знак соответствия Системы сертификации средств защиты информации по требованиям безопасности информации № РОСС RU.0001.01БИ00.

3.1. Дискреционный принцип контроля доступа

3.1.1. Комплекс средств защиты (КСЗ), реализованный в расходомере, контролирует доступ различных категорий пользователей к различным функциональным возможностям расходомера.

Контроль доступа пользователей к функциям расходомера осуществляется с помощью нажатия кнопок **<HACTPOЙКА>** и **<CEPBUC>**, расположенных на модуле обработки.

3.1.2. Режим НАСТРОЙКА доступен только персоналу завода-изготовителя и персоналу сертифицированных сервисных центров, имеющих лицензию на проведение поверки приборов.

Поверка и калибровка расходомера производятся после нажатия кнопки **<HACTPOЙКА>**. По окончании поверки кнопка **<HACTPOЙКА>** закрывается защитным колпачком, который пломбируется госповерителем. Таким образом, перевод расходомера в режим НАСТРОЙКА невозможен без вскрытия метрологической пломбы.

- 3.1.3. Режим СЕРВИС доступен сотрудникам сервисных центров и эксплуатирующих организаций, осуществляющих шефмонтаж и настройку расходомера при вводе в эксплуатацию. Настройка расходомера производится путем нажатия кнопки **СЕРВИС**>. По окончании настройки кнопка **СЕРВИС**> закрывается защитным колпачком, который пломбируется представителем сервисного центра. Таким образом, перевод расходомера в режим СЕРВИС невозможен без вскрытия эксплуатационной пломбы.
- 3.1.4. Режим РАБОТА доступен представителям эксплуатационных и контролирующих служб и предназначен для съема измерительной информации с расходомера в процессе его эксплуатации.
- 3.1.5. Приведенный выше алгоритм работы с кнопками <НАСТРОЙКА> и <СЕРВИС> и порядок их пломбирования реализует дискреционный принцип контроля доступа различных категорий пользователей к режимам работы и функциональным возможностям расходомера и является одной из составляющих комплекса средств защиты информации.

3.2. Взаимодействие пользователя с КСЗ

Для взаимодействия пользователя с КСЗ предусмотрена возможность применения персонального компьютера, подключаемого к расходомеру через адаптер USB-ЭР, подключаемый к модулю обработки.

При использовании интерфейса обеспечивается доступ к настроечным и калибровочным параметрам расходомера в зависимости от установленного уровня доступа (см. п.4.1).

- 3.2.2. Для настройки расходомера в режимах СЕРВИС и РАБОТА, а также считывания измерительной информации при помощи персонального компьютера, на ПК должна быть установлена программа «Универсальный просмотрщик», содержащая пакет мониторов, в том числе, «Монитор Лайт М» (версия 1.07 пользовательская). Программа распространяется без ограничений и доступна для загрузки с сайта www.vzljot.ru.
- 3.2.3. В случае оснащения расходомера RFID-меткой, обеспечивается доступ к настроечным и калибровочным параметрам расходомера при помощи мобильного устройства (смартфон) с установленным системным программным обеспечением (приложение «Монитор Лайт М»), с помощью которого организуется связь с расходомером по беспроводному интерфейсу.
- 3.2.4. Поверка расходомера проводится при помощи инструментальной программы «Монитор Лайт М» (версия 1.03 полная), которая недоступна для общего пользования, устанавливается на персональный компьютер поверочной лаборатории предприятия-изготовителя, отключенный от внешних серверов, и распространяется только среди сертифицированных сервисных центров (региональных представительств), имеющих лицензию на право проведения первичной и периодических поверок расходомера.
- 3.2.5. Встроенное ПО расходомера предоставляет возможность перезаписи с помощью специальной программы «Взлет Прог», также имеющей ограничение на распространение, аналогичное изложенному в предыдущем пункте. В случае перезаписи ПО расходомера должна быть проведена его внеочередная поверка.

Таким образом реализуется принцип взаимодействия пользователя с КСЗ, который является одним из составляющих комплекса средств защиты информации.

3.3. Сохранение и восстановление конфигурации расходомера

3.3.1. Программа «Универсальный просмотрщик» позволяет сохранять конфигурационную базу параметров прибора и загружать в него сохраненную конфигурацию. Считывание всей базы параметров возможно в любом режиме работы расходомера. Возможность записи в расходомер параметров из сохраненной ранее конфигурации определяется установленным режимом работы. В режиме РАБОТА невозможна загрузка никаких параметров. В режиме СЕРВИС доступны для записи настройки универсальных выходов, индикации, связи и ряд параметров алгоритма измерения расхода (например, отсечки). В режиме НАСТРОЙКА возможна загрузка в прибор любых параметров из сохраненной конфигурации.

ПРИМЕЧАНИЕ. В случае восстановления или загрузки конфигурационной базы в режиме НАСТРОЙКА необходимо проведение внеочередной поверки прибора.

3.3.2. Операции по сохранению и восстановлению конфигурации могут проводиться на заводе-изготовителе расходомера или сертифицированными сервисными центрами (региональными представительствами), имеющими лицензию на право проведения первичной и периодических поверок расходомера.

Таким образом реализуется принцип надежного восстановления ПО расходомера, который является одним из составляющих комплекса средств защиты информации.

- 3.3.3. Для сохранения конфигурационной базы прибора необходимо выполнить ряд нижеперечисленных операций:
 - в программе «Универсальный просмотрщик» выбрать пункт «Проект» / «Конфигурация» / «Сохранить конфигурацию» (рис.20).

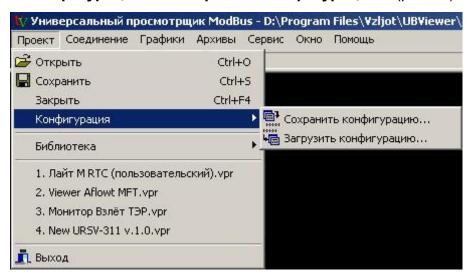


Рис.20. Окно «Универсальный просмотрщик».

- в открывшемся окне «Диалог сохранения конфигурации» выбрать набор параметров, которые будут прочитаны из прибора, установить флаг «Прочитать данные перед сохранением» и нажать кнопку «Далее», дождаться окончания считывания (рис.21):

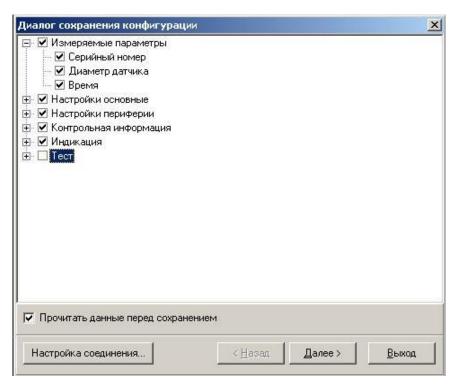


Рис.21. Окно «Диалог сохранения конфигурации».

- после окончания считывания всех выбранных параметров станет активной кнопка «Сохранить в файл», нажав которую можно ввести имя файла и сохранить прочитанную конфигурацию (рис.22).

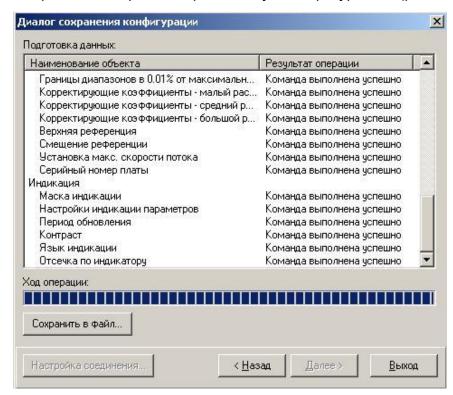


Рис.22. Окно «Диалог сохранения конфигурации» / «Ход операции».

3.3.4. Для загрузки в прибор параметров из сохраненной ранее конфигурации необходимо выполнить следующие действия:

- в программе «Универсальный просмотрщик» выбрать пункт «Проект» / «Конфигурация» / «Загрузить конфигурацию» и выбрать файл конфигурации для загрузки (рис.23):

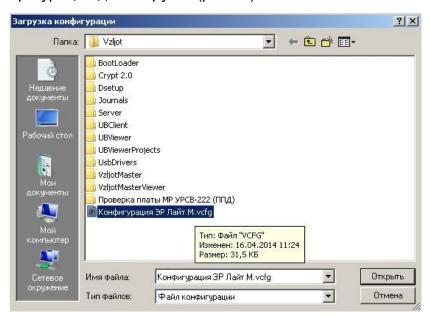


Рис.23. Окно «Загрузка конфигурации»

- в открывшемся окне «**Диалог загрузки конфигурации**» выбрать набор параметров, которые будут загружены в прибор и нажать кноп-ку «**Далее**» (рис.24):

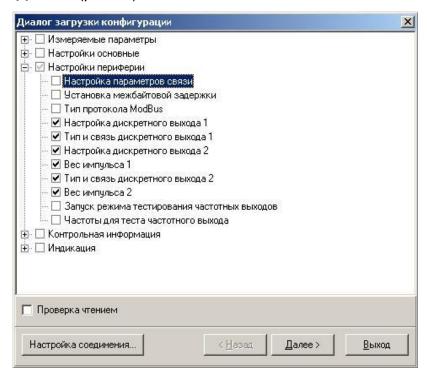


Рис.24. Окно «Диалог загрузки конфигурации»

Процесс загрузки конфигурации в прибор приведен на рис.25:

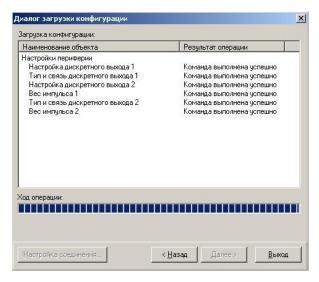


Рис.25. Окно «Диалог загрузки конфигурации» / «Ход операции».

3.4. Журнал действий пользователя (функция регистрации)

Расходомер имеет защищенный журнал действий пользователя (при наличии часов реального времени). В этом журнале фиксируются изменения всех параметров, за исключением настроек интерфейса связи и настроек индикации, а также создаются записи при смене режима работы расходомера, при изменении даты/времени в приборе и при обновлении встроенного программного обеспечения.

Журнал действий пользователя имеет размер 3000 записей и является не перезаписываемым. При его заполнении дальнейшая модификация настроечных и калибровочных параметров (т.е. всех, кроме настроек связи и индикации) становится невозможной: при попытке записи по протоколу ModBus прибор возвращает код 4 («Ошибка доступа»).

Запись в журнале действий пользователя имеет следующий формат:

- время фиксации действий пользователя по встроенным часам реального времени в UNIX-формате с точностью до секунды;
- идентификатор типа действия или модифицируемого параметра;
- значение параметра перед изменением;
- значение параметра после изменения.

Записи журнала действий пользователя доступны для чтения по протоколу ModBus в любом режиме работы прибора с помощью сервисной программы «Чтение журналов действий пользователя».

Таким образом реализуется функция регистрации, которая является одной из составляющих комплекса средств защиты информации.

4. PAБOTA C NFC MOHUTOPOM ДЛЯ OC ANDROID

4.1. Общие сведения о приложении

- 4.1.1. Приложение «Лайт М NFC» обеспечивает связь смартфона с расходомером. Чтобы установить беспроводной канал связи с прибором и выполнить считывание значений установочных и измерительных параметров, достаточно запустить приложение «Лайт М NFC» и поднести смартфон к верхней крышке расходомера. При этом не потребуется удаление пломбы сервисной организации.
- 4.1.2. Использование приложения «Лайт М NFC» возможно при выполнении следующих условий:
 - в расходомере-счетчике электромагнитном модификации «Лайт М» установлен модуль с RFID-меткой;
 - в смартфоне установлена ОС Android версии 4,4 и выше с поддержкой технологии NFC.
- 4.1.3. Инсталляционный файл приложения «Лайт M NFC» (формат *apk*) размещен на сайте фирмы «Взлет» по адресу *www.vzljot.ru* в разделе программного обеспечения расходомера-счетчика электромагнитного ВЗЛЕТ ЭР Лайт М.

Для запуска процесса установки приложения необходимо:

- в настройках смартфона разрешить загрузку файла из **Неизвестных источников**:
- активировать функцию Разрешить установку из этого источника;
- при помощи любого файлового менеджера на смартфоне запустить загруженный файл.

После завершения процесса установки на рабочем столе смартфона и в соответствующем меню появится иконка приложения «Лайт M NFC» (рис.26):

Рис.26. Вид иконки приложения «Лайт М NFC».

4.2. Пользовательский интерфейс

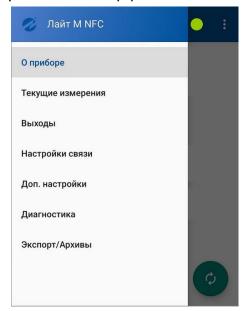
4.2.1. Индикация соединения с расходомером

Для обеспечения возможности работы с приложением «Лайт М NFC» необходимо в настройках смартфона включить интерфейс беспроводной связи **NFC**.

Запустить приложение NFC и поднести смартфон к крышке расходомера. При успешном соединении с расходомером индикатор в

верхнем правом углу экрана смартфона станет зеленого цвета. Если же соединение не было установлено, то индикатор останется серого цвета (рис.27):

а) соединение с расходомером установлено



б) соединение с расходомером не установлено

Рис.27. Вид индикатора соединения с расходомером.

4.2.2. Управление окнами приложения

4.2.2.1. После запуска приложения «Лайт М NFC» открывается его главное окно (рис.28), содержащее набор элементов, характерных для приложений с графическим интерфейсом:

Рис.28. Вид главного окна приложения «Лайт М NFC».

Ниже строки заголовка главного окна располагается интерактивный список наименований дочерних окон приложения:

- О приборе;
- Текущие измерения;
- Выходы:
- Настройки связи;
- Доп. настройки;
- Диагностика;
- Экспорт/Архивы.
- 4.2.2.2. Дочернее окно приложения открывается после нажатия в интерактивном списке на строку с соответствующим наименованием и может иметь следующий вид (рис.29):

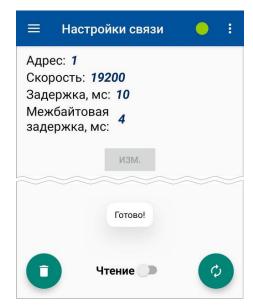


Рис.29. Вид дочернего окна приложения «Лайт M NFC».

Также возможен переход к дочернему окну, наименование которого выделено световым курсором в интерактивном списке, посредством касания пальцем затененной области, расположенной вдоль правой границы главного окна (рис.30):

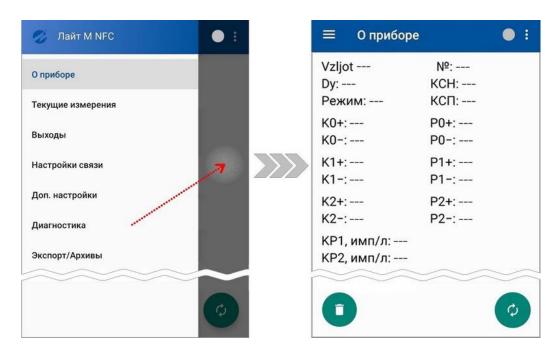


Рис.30. Вызов дочернего окна касанием затемненной области главного окна.

4.2.2.3. Назначение элементов управления в дочернем окне приложения:

Таблица 4

Символ	Описание
	– перейти в главное окно приложения;
•	– отобразить пункт меню О программе;
изм.	– отрыть окно ввода значений установочных параметров;
0	 очистить значения параметров, содержащихся в окне (начинается отображение последовательности символов);
Ø	 перечитать и вывести на экран значения параметров, содержащихся в окне;
0	– остановить процесс чтения значений параметров, содержащихся в окне;
	– установить режим работы Чтение с параметрами, содержащимися в окне;
	– установить режим работы Запись с параметрами, содержащимися в окне.

- 4.2.2.4. В дочернем окне с переключателем режимов работы () предусмотрена возможность редактирования значений установочных параметров, содержащихся в этом окне (рис.4). Для чего следует:
 - установить режим работы **Запись**, сдвинув переключатель вправо (). Слева от переключателя появится надпись, подтвреждающая установленный режим (**Запись**). Также станет активной кнопка <**изм.**>;
 - нажать кнопку <**изм.**>, расположенную под группой параметров, подлежащих редактированию. Откроется окно, возможный вид которого показан на рис.31:

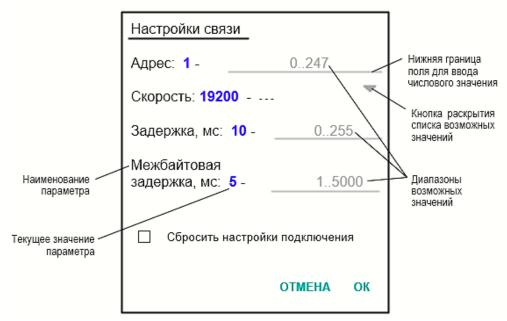


Рис.31. Вид окна редактирования значений установочных параметров.

- нажать на поле для ввода числового значения: в нижей части экрана смартфора откроется цифровая клавиатура;
- ввести требуемое числовое значение в поле установочного параметра и нажать кнопку **OK**>, окно редактирования закроется;
- в дочернем окне правее наименования установочного параметра начнется отображение его отредактированного значения (рис.32):

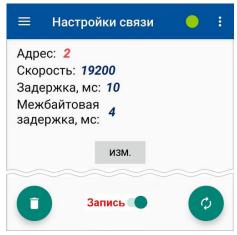


Рис.32. Вид отредактированного значения в дочернем окне.

- поднести смартфон к крышке расходомера и дождаться окончания процесса записи в память прибора отредактированного значения установочного параметра;
- нажать кнопку и убедиться, что установочный параметр имеет требуемое значение.

4.2.3. Окно «О приборе»

Вид окна О приборе показан на рис.33:

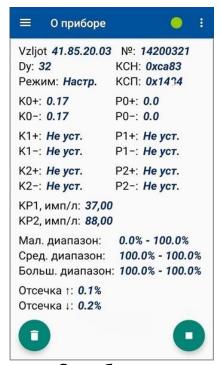


Рис.33. Вид дочернего окна «О приборе».

В окне отображаются значения и обозначения следующих параметров:

- версия ПО расходомера;
- **№** серийный номер расходомера;
- **Dy** диаметр условного прохода расходомера;
- КСН контрольная сумма всей настроечной базы прибора;
- КСП контрольная сумма ПО прибора;
- Режим текущий режим работы расходомера;
- K0+, K0-, P0+, P0-, K1+, K1-, P1+, P1-, K2+, K2-, P2+, P2- калибровочные коэффициенты;
- **КР1**, **КР2** константы преобразования универсальных выходов (если универсальный выход работает в частотном или импульсном режимах);
- **Мал. диапазон**, **Сред. диапазон**, **Больш. диапазон** границы калибровочных диапазонов;
- Отсечка ↑, Отсечка ↓ отсечки по расходу.

4.2.4. Окно «Текущие измерения»

Вид окна Текущие измерения показан на рис.34:

Рис.34. Вид дочернего окна «Текущие измерения».

В окне отображаются значения и обозначения следующих параметров:

- Дата текущие дата и время;
- Наработка время наработки расходомера;
- **Q**, **л/мин** и **Q**, **м**³/ч текущий объемный расход;
- V+, м³ накопленный объем для прямого направления;
- **V-, м**³ накопленный объем для обратного (реверсивного) направления:

- **Vобщ.**, **м**³ – накопленный общий объем.

Общий объем рассчитывается как алгебраическая сумма накопленных объемов для прямого и обратного направления.

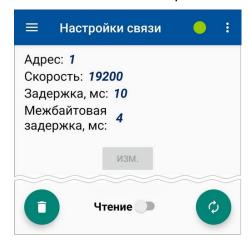
При отсутствии НС в группе **Ошибки** отображается сообщение **Ошибок нет**.

Если фиксируется НС, то отображается соответствующее сообщение. Перечень сообщений, отображаемых в окне при фиксации НС, приведен в разделе 2.10 данного Руководства по эксплуатации.

4.2.5. Окно «Выходы»

Вид окна Выходы показан на рис.35:

Рис.35. Вид дочернего окна «Выходы».


В окне отображаются значения и обозначения следующих параметров:

- **Тип** тип универсальных выходов;
- Акт. уров. активный уровень выхода;
- **F** частота сигнала на выходе;
- Импульс длительность импульса;
- Fмакс максимально допустимая частота на выходе;
- **КР1, КР2** константы преобразования;
- Связь связь по объёму и/или расходу;
- **F1**, **F2** тестовые частоты;
- Режим тестовый режим частотного выхода.

4.2.6. Окно «Настройки связи»

Вид окна Настройки связи показан на рис.36:

Рис.36. Вид дочернего окна «Настройки связи».

В окне отображаются значения и обозначения следующих параметров:

- Адрес адрес прибора;
- Скорость скорость обмена;
- Задержка время ожидания ответа;
- Межбайтовая задержка задержка передачи данных от прибора.

4.2.7. Окно «Доп. настройки»

Вид окна Доп. настройки показан на рис.37:

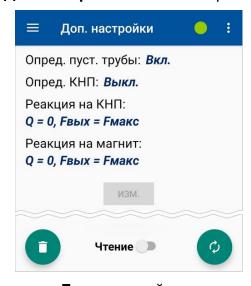


Рис.37. Вид дочернего окна «Доп. настройки».

В окне отображаются значения и обозначения следующих параметров:

- Опред. пуст. трубы фиксация отсутствия жидкости в трубопроводе;
- Опред. КНП фиксация кода нулевого потенциала;
- **Реакция на КНП** реакция прибора на фиксируемый код нулевого потенциала;
- **Реакция на магнит** реакция прибора на фиксируемое воздействие магнита.

4.2.8. Окно «Диагностика»

Вид окна Диагностика показан на рис.38:

Рис.38. Вид дочернего окна «Диагностика».

В окне отображаются значения и обозначения следующих параметров: а) группа Пустая труба:

- **Текущий код АЦП** фиксируемый код АЦП;
- Эталонный код АЦП код АЦП в памяти расходомера;
- **Отсечка** установленный пороговый код АЦП, при превышении которого фиксируется пустая труба и обнуляется расход;
- б) группа Нулевой потенциал:
- Текущий код фиксируемый код нулевого потенциала;
- **Порог** установленный пороговый код нулевого потенциала, при превышении которого выполняется предустановленное событие;
- в) группа Сопротивление катушек:
- Текущее фиксируемое сопротивление катушек;
- Исходное исходное сопротивление катушек;
- г) группа Уровень опоры:
- Текущий текущий уровень опорного сопротивления катушек;
- **Эталонный** уровень опорного сопротивления катушек, сохраненное в памяти расходомера.

4.2.9. Окно «Экспорт / Архивы»

- 4.2.9.1. Приложение позволяет считывать из памяти расходомера и сохранять в виде отдельного файла на смартфоне архивы:
 - часовые (последние 84 записи);
 - суточные (последние 92 записи);
 - месячные (последние 48 записей).

Считывание архивов возможно, как при наличии, так и при отсутствии напряжения питания расходомера.

Вид окна Экспорт / Архивы показан на рис.39:

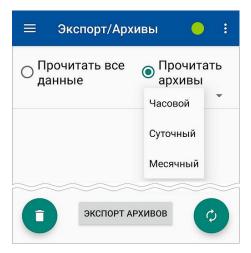


Рис.39. Вид дочернего окна «Экспорт / Архивы».

В окне отображаются обозначения следующих команд:

- Прочитать все данные прочитать из расходомера и сохранить в памяти смартфона значения всех установочных и текущих измерительных параметров;
- **Прочитать архивы** прочитать из расходомера и вывести на экран смартфона данные часового (суточного, месячного) архива. Тип архива выбирается из раскрывающегося списка (рис.40);
- **ЭКСПОРТ АРХИВОВ** сохранить архивные данные расходомера в виде отдельного файла в папке смартфона, созданной автоматически либо по усмотрению пользователя.
- 4.2.9.2. После выполнения команды **Прочитать архивы Часовой** (**Суточный**) на экране смартфона начинается индикация списка записей соответствующего архива (рис.40):

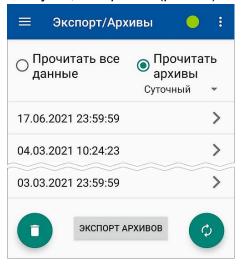


Рис.40. Вид окна со списком архивных записей.

Строки списка с обозначениями архивных записей имеют формат «число», «месяц», «год», «часы», «минуты», «секунды», что соответствует моменту времени сохранения каждой архивной записи в расходомере.

Для просмотра содержимого архивной записи необходимо нажать на ее соответствующее обозначение в общем списке.

После чего откроется окно с архивными данными, содержащимися в выбранной архивной записи (рис.41):

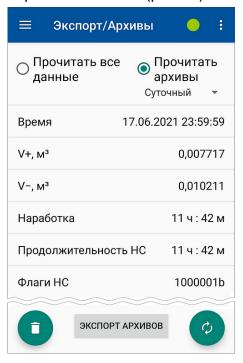


Рис.41. Вид окна с содержимым архивной записи.

4.2.9.3. Для сохранения содержимого просматриваемого архива следует нажать кнопку **ЭКСПОРТ АРХИВОВ**>. При этом, в зависимости от модели смартфона, появится окно, возможный вид которого показан на рис.42. Пользователю будет предложено выбрать папку для сохранения файла с данными архива. Сохраняемый файл имеет формат *csv*.

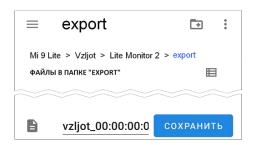


Рис.42. Возможный вид окна для выбора папки сохранения данных.

4.2.10. Окно «О программе»

После нажатия на кнопку в правом верхнем углу главного окна приложения появляется пункт меню **О программе**, позволяющий вызвать окно с информацией об установленном в смартфоне приложении (рис.43):

Рис.43. Вид окна «О программе».

ПРИЛОЖЕНИЕ А. Типовые значения установочных параметров

Таблица А.1

_	Расхо для однонапра	одомер вленного потока	Расходомер для реверсивного потока			
Параметр	Унив. выход №1 (XT2) *	Унив. выход №2 (ХТ1) **	Унив. выход №1 (ХТ2) *	Унив. выход №2 (XT1) **		
1. Режим работы	Частотный	Частотный	Частотный	Логический		
2. Назначение	Расход прямой	Расход прямой	Расход по модулю	Направление потока для теплоучета		
3. Константа пре- образования	по табл. А.2	по табл. А.3	по табл. А.2			
4. Отсечки снизу по расходу	0,001Qмакс	0,001Q _{макс}	0,001Q _{макс}			
5. Максимальная частота	100 Гц (при ½ Q _{наиб})****	500 Гц (при Q _{наиб})	100 Гц (при ½ Q _{наиб})****			
6. Уровень сигнала	Низ	ЗКИЙ	Низкий	Низкий ***		
7. Время инерции				10 мин.		
8. Режим работы оконечного каскада	Акти	вный	Активный			

- * при типовых значениях установочных параметров выходов расходомера и типовой настройке тепловычислителей «ВЗЛЕТ ТСРВ» к универсальному выходу №1 расходомера подключается тепловычислитель исполнения ТСРВ-043 (см. табл.А.2), а к универсальному выходу №2 тепловычислители исполнений ТСРВ-024(М), -025, -027, -042 (см. табл.А.3). Допускается тепловычислители исполнений ТСРВ-024(М), -025, -027, -042 подключать к выходу №1 расходомера, установив в тепловычислителе соответствующее значение константы преобразования (см. табл.А.2);
- ** при типовых значениях установочных параметров универсальный выход №2 расходомера для реверсивного потока может использоваться для подключения к логическому входу тепловычислителя, настроенного на прием сигнала реверса;
- *** при прямом направлении потока;
- **** максимальное значение частоты на универсальном выходе №1 для заданных по умолчанию констант преобразования формируется при значении расхода, равном половине наибольшего расхода Qнаиб (см. часть I настоящего руководства по эксплуатации). При значении расхода выше заданного, расходомер выдает сигнал о нештатной ситуации: Ошибка выхода 1 (!1).

Таблица А.2. Типовые значения константы преобразования для универсального выхода № 1

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Г макс, Гц							100						
Константа пре- образования, имп/л	200	80	50	32	20	12,5	8	5	3,2	2	0,8	0,5	0,2

Таблица А.3. Типовые значения константы преобразования для универсального выхода №2

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Г макс, Гц		500											
Константа пре- образования, имп/л	500	200	125	80	50	32,5	20	12,5	8	5	2	1,25	0,5

Таблица А.4. Значения расходов для разных типоразмеров, соответствующие типовому значению отсечки

DN	10	15	20	25	32	40	50	65	80	100	150	200	300
Отсечка, м³/час	0,003	0,007	0,011	0,018	0,029	0,045	0,071	0,120	0,181	0,283	0,637	1,132	2,547

Eсть ссылки на документы: - rel er.xxxLFM6 docl.3

