

ТЕПЛОСЧЕТЧИК-РЕГИСТРАТОР MT200DS

Инструкция по монтажу

В24.00-00.00 ИМ

СОДЕРЖАНИЕ

		Стр
введение		3
1. МЕРЫ БЕЗОПАС	СНОСТИ	4
	РЕКОМЕНДАЦИИ ПО ВЫБОРУ МЕСТА	4
3. ПОДГОТОВКА К	С МОНТАЖУ	9
4. МОНТАЖ		9
5. ДЕМОНТАЖ		14
6. ВВОД В ЭКСПЛ	УАТАЦИЮ	16
ПРИЛОЖЕНИЕ 1.	Доработка стандартных фланцев по ГОСТ 12821-80 при их использовании для установки ЭМР	17
ПРИЛОЖЕНИЕ 2.	Расширитель для установки преобразователей температуры в трубопроводы малых диаметров	18
ПРИЛОЖЕНИЕ 3.	Схема соединения теплосчетчика	19

Настоящая инструкция определяет порядок монтажа и демонтажа на объекте (узле учета тепловой энергии) теплосчетчика-регистратора MT200DS, изготовленного фирмой «ВЗЛЕТ». При проведении работ дополнительно необходимо руководствоваться документом «Теплосчетчик-регистратор MT200DS. Техническое описание и инструкция по эксплуатации» В24.00-00.00 ТО.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

D_v - диаметр условного прохода;

КД - конструкторская документация;

ПД - преобразователь давления;

ПР - преобразователь расхода;

ПТ - преобразователь температуры;

ТВ - тепловычислитель;

ТС - теплосчетчик;

ТСП - термопреобразователь сопротивления платиновый;

УЗР - ультразвуковой расходомер;

ЭД - эксплуатационная документация;

ЭМР - электромагнитный расходомер.

ВНИМАНИЕ!

- 1. Изготовитель не несет гарантийных обязательств в отношении теплосчетчика (TC), у которого к моменту ввода в эксплуатацию истекло 6 месяцев с даты продажи.
- 2. ЗАПРЕЩАЕТСЯ на всех этапах работы с ТС касаться руками электродов, находящихся во внутреннем канале электромагнитного расходомера (ЭМР).
- 3. **ЗАПРЕЩАЕТСЯ** проведение электросварочных работ в помещениях, где установлены составные части теплосчетчика (TC), при включенном питании TC, если трубопроводы, где установлены ЭМР, не заполнены теплоносителем, а также на трубопроводах в местах установки ЭМР.
- 4. **КАТЕГОРИЧЕСКИ НЕ ДОПУСКАЕТСЯ** протекание сварочного тока через корпус ЭМР при проведении электросварочных работ.
- 5. **ЗАПРЕЩАЕТСЯ** при проведении сварочных работ использовать ЭМР в качестве монтажного приспособления. Для этого должен использоваться габаритный имитатор расходомера, поставляемый по заказу.
- 6. **HE** Д**ОПУСКАЕТСЯ** снимать с ЭМР стяжной болт с пластинами на время более 30 минут.
- 7. ЗАПРЕЩАЕТСЯ поворачивать ЭМР, установленные в трубопровод, вокруг оси трубопровода.

1. МЕРЫ БЕЗОПАСНОСТИ

- 1.1. К проведению работ по монтажу (демонтажу) ТС допускается персонал:
- специализированных организаций, имеющих разрешение предприятия-изготовителя, а также лицензию на право выполнения данных работ;
- имеющий право на проведение работ на электроустановках с напряжением до 1000 B;
- знакомый с документацией на ТС и вспомогательное оборудование, используемое при проведении работ.
 - 1.2. При проведении работ с ТС опасными факторами являются:
 - переменное напряжение с действующим значением до 242 В частотой 50 Гц;
 - давление в трубопроводе до 2,5 МПа;
 - температура теплоносителя (трубопровода) до 180 °C.
 - 1.3. При проведении работ по монтажу (демонтажу) ЗАПРЕЩАЕТСЯ:
- заменять составные части TC или элементы трубопровода до полного снятия давления на участке трубопровода, где производятся работы;
 - производить замену электрорадиоэлементов при включенном питании ТС;
- использовать неисправные электрорадиоприборы и электроинструменты, либо без подключения их корпусов к шине защитного заземления.
- 1.4. Перед проведением работ на трубопроводе необходимо убедиться с помощью измерительного прибора, что на трубопроводе отсутствует опасное для жизни напряжение переменного или постоянного тока.

2. ТРЕБОВАНИЯ И РЕКОМЕНДАЦИИ ПО ВЫБОРУ МЕСТА УСТАНОВКИ ТС

- 2.1. Для установки ТС на объекте необходимо:
- наличие свободных участков на трубопроводе для врезки или установки преобразователей расхода (ПР) и прямолинейных участков трубопровода необходимой длины до и после ПР;
- наличие свободных участков на трубопроводах соответствующего внутреннего диаметра для установки преобразователей температуры (ПТ) с помощью приварных штуцеров, либо расширителей для установки ПТ;
- наличие места для установки тепловычислителя (ТВ) и места для установки модема (при необходимости). Габариты модема 170 × 110 × 30.

Масса-габаритные характеристики ЭМР, ТВ, ПТ приведены в документе «Теплосчетчик-регистратор MT200DS. Техническое описание и инструкция по эксплуатации» B24.00-00.00 TO.

ВНИМАНИЕ!

Не допускается размещение ТС в условиях, не соответствующих разделу 2.7 документа «Теплосчетчик-регистратор MT200DS. Техническое описание и инструкция по эксплуатации» B24.00-00.00 TO.

- 2.2. Требования и рекомендации по выбору места установки ПР.
- 2.2.1. Место установки ПР должны выбираться из следующих условий:
- ПР лучше располагать в той части трубопровода, где пульсация и завихрения жидкости минимальные;
- в месте установки в трубопроводе не должен скапливаться воздух ПР не должен располагаться в самой высокой точке трубопровода, а также в трубопроводе с открытым концом; наиболее подходящее место для монтажа нижний либо восходящий участок трубопровода (рис.1);

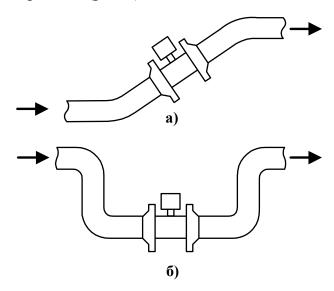


Рис. 1. Варианты места установки ЭМР.

- давление теплоносителя в трубопроводе должно исключать газообразование;
- внутренний канал ПР всегда должен быть заполнен жидкостью;
- напряженность внешнего магнитного поля не должна превышать 40 А/м;
- не допускается наличие капающей на ПР жидкости;
- до и после ПР должны быть прямолинейные участки трубопровода (с D_y , равным D_y ПР) без каких-либо элементов, искажающих поток жидкости, и длиной $3 \cdot D_y$ и $2 \cdot D_y$ соответственно;
- ПР допускается монтировать в горизонтальный, вертикальный или наклонный трубопровод. Наличие грязевиков или специальных фильтров не обязательно.
- 2.2.2. Для установки ЭМР МР200, МР400 в трубопровод используется сборочно-сварная конструкция (рис.2), состоящая из:
- конфузора <1> и диффузора <7>, служащих для перехода от D_y трубопровода к D_y ЭМР, если D_y трубопровода больше, чем типоразмер (D_y) монтируемого ЭМР;
 - отрезков трубы <2>;
 - шаровых задвижек <3>;
 - прямолинейных участков <4> на входе и выходе ЭМР;
- фланцев <5> со стяжными шпильками <8> для крепления ЭМР или габаритного имитатора ЭМР <6>.

На ЭМР стрелкой указано требуемое направление потока жидкости.

В таблице 1 даны справочные линейные размеры в мм поставляемой сборочно-сварной конструкции для ЭМР различных типоразмеров, а также значение больших диаметров (D_{y1}) конфузора (диффузора). В скобках указаны размеры при использовании прямолинейных участков с минимально допустимыми длинами. Если

по условиям монтажа на объекте требуется конфузор (диффузор) с меньшим значением D_{y1} , то конфузор (диффузор) укорачиваются под соответствующее значение D_{y1} . При этом общая длина конструкции соответственно уменьшается. Если значение D_{y} ЭМР равно значению D_{y} трубопровода, то конфузор (диффузор) не используется.

При изготовлении сборочно-сварной конструкции используются стандартные фланцы по ГОСТ 12821-80 с доработками, указанными в Приложении 1.

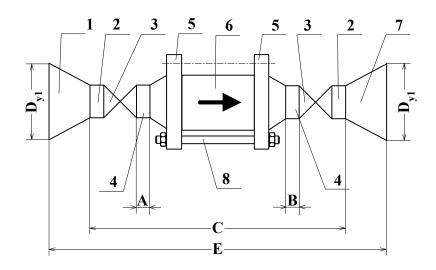


Рис. 2. Схематическое изображение сборочно-сварной конструкции с шаровыми задвижками для установки ЭМР в трубопровод

1 - конфузор; 2 - отрезок трубопровода с резьбой для установки шаровой задвижки; 3 - шаровая задвижка; 4 - прямолинейный участок трубопровода; 5 - фланец крепления ЭМР; 6 - ЭМР или габаритный имитатор ЭМР; 7 - диффузор; 8 - стяжная шпилька.

Допуск на C* E* A B $\mathbf{D_{v}}$ \mathbf{D}_{v1} свинчивание 10 40 75 (75) 75 (75) +20463 (463) 630 (630) 20 80 100 (60) 60 (40) 480 (420) 820 (760) +2532 160 (95) 95 (65) 680 (580) 1070 (975) +25100 40 1415 (1295) 150 200 (120) 120 (80) 770 (650) +2565 195 (130) 1145 (950) 1900 (1705) 200 325 (195) +25

1360 (1120)

2040 (1800)

Таблица 1

+30

240 (160)

ПРИМЕЧАНИЕ.

200

400 (240)

80

Если предполагается теплосчетчик использовать в режиме «SUMMER», то участок В сварной конструкции рекомендуется выполнять длиной, равной участку А.

Сборочно-сварная конструкция для установки ЭМР в трубопровод без использования шаровых задвижек и ее линейные размеры в мм приведены на рис.3 и в табл.2.

^{* -} справочный размер без учета технологических допусков на сварку.

Элементы сборочно-сварной конструкции (за исключением ЭМР) входят в комплект поставки присоединительного оборудования и поставляются по частям или в сборе в отдельной упаковке.

Комплект присоединительного оборудования поставляется (при необходимости) по заказу в согласованной с заказчиком комплектации, оговариваемой при заключении договора на поставку. При необходимости может быть поставлен комплект конструкторской документации (КД) на присоединительное оборудование.

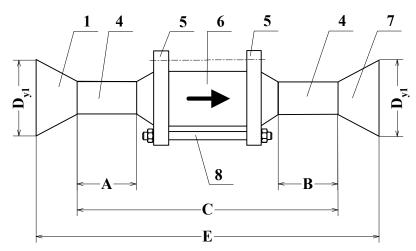


Рис. 3. Схематическое изображение сборочно-сварной конструкции без шаровых задвижек для установки ЭМР в трубопровод

1 - конфузор; 4 - прямолинейный участок трубопровода; 5 - фланец крепления ЭМР; 6 - ЭМР или габаритный имитатор ЭМР; 7 - диффузор; 8 - стяжная шпилька

					Таблица 2
$\mathbf{D_y}$	$\mathbf{D_{y1}}$	A	В	C *	E*
10	40	16 (16)	16 (16)	175 (175)	340 (340)
20	80	100 (60)	60 (40)	300 (240)	640 (580)
32	100	160 (95)	95 (65)	420 (325)	815 (715)
40	150	200 (120)	120 (80)	500 (380)	1145 (1025)
65	200	325 (195)	195 (130)	735 (540)	1400 (1295)
80	200	400 (240)	240 (160)	900 (660)	1580 (1340)
100	250	500 (300)	300 (200)	1069 (769)	1920 (1620)
150	-	750 (450)	450 (300)	1505 (1055)	-

* - справочный размер без учета технологических допусков на сварку

Габаритные имитаторы ЭМР используются вместо ЭМР при проведении монтажно-сварочных работ, а также устанавливаются в трубопровод взамен ЭМР при отправке TC на периодическую поверку или в ремонт.

2.2.3. Монтаж ультразвукового расходомера (УЗР) УРСВ-010М «ВЗЛЕТ РС» выполняется в соответствии с документом «Расходомер-счетчик ультразвуковой УРСВ-010М «ВЗЛЕТ РС». Инструкция по монтажу» В35.00-00.00 ИМ.

Монтаж ПР иных типов осуществляется в соответствии с эксплуатационной документацией (ЭД) на данный тип ПР.

2.3. Требования и рекомендации по выбору места установки ПТ.

- 2.3.1. Скорость протекания теплоносителя в месте установки ПТ не должна превышать 4 м/с для ТСП типа КТПТР.
- 2.3.2. ПТ в подающем и обратном трубопроводах должны быть смонтированы одинаковым образом: либо перпендикулярно к оси трубопровода, либо наклонно навстречу потоку жидкости, либо в колено трубопровода навстречу потоку жидкости (рис.4).

Для установки ПТ служат 2 типа поставляемых штуцеров - прямой и наклонный.

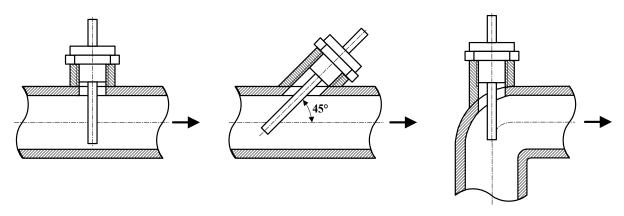


Рис. 4. Способы установки ПТ.

2.3.3. В зависимости от внутреннего диаметра трубопровода в месте установки ПТ и способа установки (перпендикулярно или наклонно) рекомендуется выбирать типоразмер ТСП КТПТР-05 (табл.3). Допускается осуществлять выбор типоразмера ПТ в соответствии с региональными требованиями или нормативами.

Нормированная длина Внутренний диаметр трубопровода, мм **КТПТР-05, L, мм** прямой штуцер наклонный штуцер 60 - 17040 - 10570 98 85 - 26060 - 160133 120 - 38085 - 240223 210 - 670150 - 450

Таблица 3

Установка ПТ в трубопроводы меньших диаметров может осуществляться либо в колено, либо в специальный расширитель соответствующего типоразмера (Приложение 2), который приваривается к диффузору сборочно-сварной конструкции.

- 2.3.4. ПТ рекомендуется устанавливаться в трубопровод после соответствующего ПР по направлению потока, чтобы ПТ не вносил возмущения в поток жидкости.
 - 2.3.5. Не допускается наличие капающей на ПТ жидкости.
 - 2.4. Требования и рекомендации по выбору места размещения ТВ.

- 2.4.1. Для размещения ТВ служит монтажная планка, которая крепится неподвижно на вертикальной плоскости. ТВ с помощью выступов на задней стенке корпуса подвешивается на монтажной планке.
 - 2.4.2. Выбор места размещения ТВ определяется следующими условиями:
 - длиной кабелей связи TB ПР и TB ПТ;
- категорически не допускается наличие капающего на ТВ конденсата либо жидкости с проходящих трубопроводов;
- не допускается размещение TB в помещении, где температура окружающего воздуха может выходить за пределы 5...55 °C, а влажность выше 80 % при температуре ниже 35 °C;
- не допускается размещать ТВ вблизи источников тепла, например, горячих трубопроводов;
- к месту размещения ТВ должна быть проведена шина заземления для обеспечения защитного заземления ТС;
 - необходимо обеспечение свободного доступа к ТВ.

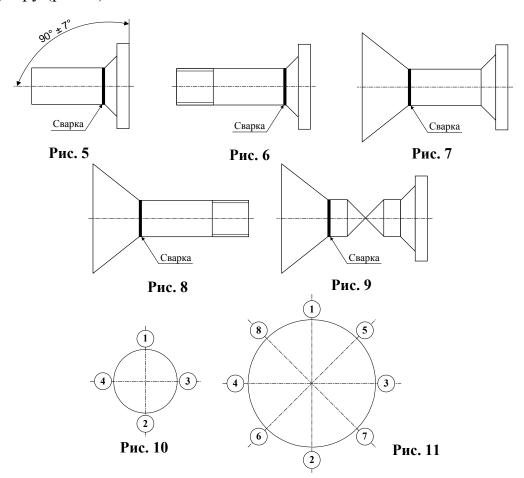
Освещение ТВ необязательно, т.к. дисплей ТВ имеет собственную подсветку.

3. ПОДГОТОВКА К МОНТАЖУ

3.1. ТС в зависимости от типоразмера и комплектности поставляется в одной или нескольких упаковках.

Комплект присоединительной арматуры поставляется в отдельной таре. При групповой поставке возможна упаковка нескольких комплектов присоединительной арматуры в общую тару.

- 3.2. Транспортировка ТС к месту монтажа должна осуществляться в заводской таре.
- 3.3. После транспортировки TC к месту установки при отрицательной температуре и внесения его в помещение с положительной температурой во избежание конденсации влаги необходимо выдержать TC в упаковке не менее 3х часов.
- 3.4. При распаковке ТС проверить его комплектность в соответствии с паспортом на данный прибор.
- 3.5. ЭМР, имеющие выступающую фторопластовую футеровку, обжаты с торцов специальными пластинами с помощью стяжного болта. Снимать стяжной болт допускается на время не более 30 мин.


4. МОНТАЖ

- 4.1. Подготовка места установки ЭМР.
- 4.1.1. Перед тем, как разрезать трубопровод в месте установки ЭМР, необходимо смонтировать все элементы сборно-сварной конструкции, габаритный имитатор ЭМР и расширитель (при необходимости) в единую конструкцию.
- 4.1.2. При изготовлении сборно-сварной конструкции необходимо соблюдать следующий порядок и правила проведения работ:
- а) если конструкция предусматривает использование конфузора и диффузора, необходимо проверить соответствие диаметра D_{v1} конфузора (диффузора) D_v подво-

дящей трубы и при несоответствии обрезать конфузор (диффузор) под реальный D_{y} подводящей трубы;

- б) приварить к фланцам <5> прямолинейные участки <4> таким образом, что-бы угол между осью трубы прямолинейного участка <4> и плоскостью фланца, прилегающей к ЭМР, составил $90^{\circ} \pm 7^{\circ}$ (рис. 5); если конструкция предусматривает установку шаровых задвижек (рис.2), то прямолинейный участок приваривается к фланцу концом без резьбы (рис. 6);
- в) при сборке без шаровых задвижек другой конец прямолинейного участка приваривается к диффузору (конфузору) (рис. 7); при сборке с шаровыми задвижками к диффузору (конфузору) приваривается отрезок трубопровода <2> концом без резьбы (рис. 8);
- г) с помощью шпилек вся конструкция собирается в единое целое (рис.2,3); при этом вместо ЭМР используется габаритный имитатор ЭМР во избежание повреждения ЭМР при дальнейшем монтаже этой конструкции в трубопровод.

При сборке конструкции с шаровыми задвижками (рис.2) на резьбовой конец прямолинейного участка наворачивается шаровая задвижка с гайками, а в шаровую задвижку вворачивается резьбовой конец отрезка трубы, приваренной к конфузору или диффузору (рис. 9).

При сборке необходимо обратить внимание, чтобы отверстия с резьбой на цилиндрической поверхности фланцев, предназначенные для крепления проводников электрического соединения с корпусом ЭМР, оказались на одной линии, параллельной оси конструкции.

Торцевые плоскости имитатора ЭМР взаимно параллельны и имеют профиль обратный профилю прилегающей плоскости фланца. Поэтому после затяжки гаек на

шпильках необходимая параллельность плоскостей фланцев получается автоматически.

Затяжка гаек на шпильках производится в очередности, указанной на рис.10, 11, с крутящим моментом в соответствии с табл.4.

Таблица 4

D _y , мм	10	20	32	40	65	80	150
M_{κ} , H	15	15	25	35	40	50	90

д) перед началом работ на трубопроводе следует закрепить участки труб, которые могут отклониться от нормального положения после разрезания трубопровода.

В выбранном месте трубопровод, освобожденный от жидкости, разрезать и вварить описанную конструкцию с соблюдением следующих условий:

- более длинный прямолинейный участок <4> (рис.2,3) должен оказаться первым по направлению потока теплоносителя;
- монтажная коробка ЭМР MP200 или электронный блок MP400, установленного в горизонтальный или наклонный трубопровод, должна располагаться над трубопроводом;
- резьбовые отверстия на цилиндрической поверхности фланцев должны находиться в том положении по отношению к оси трубопровода, где будет располагаться монтажная коробка MP200 или электронный блок MP400;
- рычаги шаровых задвижек должны иметь свободный ход во всем диапазоне углов поворота рычага.
- 4.1.3. Монтаж ПР УРСВ-010М «ВЗЛЕТ РС» осуществляется в соответствии с документом «Расходомер-счетчик ультразвуковой УРСВ-010М «ВЗЛЕТ РС». Инструкция по монтажу» В35.30-00.00 ИМ.

Монтаж ПР иных типов выполняется в соответствии с ЭД на данный тип ПР.

- 4.2. Монтаж сигнальных кабелей МР200.
- 4.2.1. ЭМР MP200 соединяется с тепловычислителем двумя сигнальными кабелями длиной не более 50 м:
 - кабелем питания обмоток электромагнита кабелем накачки;
- кабелем передачи ЭДС электромагнитной индукции кабелем измерительного сигнала.
- 4.2.2. Кабель накачки и кабель измерительного сигнала для каждого MP200 должны прокладываться в отдельных заземленных металлических (из нелегированной стали) трубах или металлорукавах. Не допускается размещение в одной трубе (металлорукаве) кабелей накачки или кабелей измерительного сигнала от разных ЭМР.
- 4.2.3. Заземление всех кабельных трубопроводов (металлорукавов) должно выполняться таким образом, чтобы по возможности исключить образование замкнутых контуров заземления.

Отдельные участки кабельного трубопровода (металлорукава) должны либо соединяться между собой с помощью переходных металлических коробок, обеспечивающих электрическое соединение, либо иметь собственные заземления, по возможности исключающие образование замкнутых контуров либо уменьшающие их площадь.

4.2.4. При длине линии связи ТВ – MP200 менее 6 м допускается сигнальные кабели прокладывать без труб и металлорукавов. В этом случае сигнальные кабели должны размещаться на расстоянии не менее 20 см друг от друга, а также от кабелей связи RS232 (RS485), импульсных выходов.

Вблизи от места прокладки сигнальных кабелей не должно быть силовых кабелей или устройств, создающих электромагнитные поля напряженностью более 40 А/м.

4.2.5. В качестве кабеля измерительного сигнала должен использоваться изолированный экранированный кабель с двумя свитыми центральными жилами — так называемая «витая пара в экране». Сечение жил не менее $0,12~\text{мm}^2$, плотность экрана не менее 80~%, шаг витков — 30—40~мм. Экран кабеля не должен соприкасаться с трубой или металлорукавом, в котором он прокладывается. Рекомендуется использовать кабель КСВВЭ $2\times0,5~\text{мm}^2$, КММ $2\times0,12~\text{мm}^2$, ПВЧС $2\times0,12~\text{мm}^2$, ШВЧИ $2\times0,14~\text{мm}^2$.

Для питания обмоток электромагнита может использоваться двужильный кабель без экрана с сечением жил не менее $0.5~{\rm mm}^2$, например, ШВА $2\times0.5~{\rm mm}^2$ или ШВВП $2\times0.5~{\rm mm}^2$.

При подготовке к монтажу концы сигнальных кабелей должны разделываться в соответствии с ГОСТ 23587: зачищается изоляция на длину 5 мм и облуживаются.

Комплект кабелей нужной длины может быть заказан на предприятииизготовителе TC.

- 4.3. Подготовка места установки ПТ.
- 4.3.1. В верхней части трубопровода с внутренним диаметром более 60 мм в выбранном месте установки ПТ делается отверстие:
- под наклонный штуцер овал с \varnothing_{\min} = 18 мм и \varnothing_{\max} = 25 мм (больший размер располагается вдоль трубопровода);
 - под прямой штуцер цилиндрическое, диаметром 18 мм.

Штуцер приваривается к трубопроводу таким образом, чтобы отверстие в штуцере и трубопроводе совпадали. Наклонные штуцера привариваются в таком положении, чтобы ПТ устанавливались навстречу потока жидкости (рис.4). При сварке обращать внимание на сохранность внутренней резьбы штуцера.

- 4.3.2. В штуцера ввинчиваются гильзы соответствующей длины с использованием кольцевых прокладок.
 - 4.4. Монтаж сигнальных кабелей ПТ.
- 4.4.1. В качестве сигнального кабеля ПТ должен использоваться трех- или четырехжильный кабель в экране. Сечение жил не менее $0.12~{\rm mm}^2$. Рекомендуется использовать кабель КММ $3\times0.12~{\rm mm}^2$ или КММ $4\times0.12~{\rm mm}^2$.
- 4.4.2. Сигнальные кабели всех ПТ должны быть одинаковой длины не более 100 м каждый. Допустимый разброс по длине не более $\pm\,0.2$ м.

При подготовке к монтажу концы сигнальных кабелей должны разделываться в соответствии с ГОСТ 23587: зачищается изоляция на длину 5 мм и облуживаются. На концы сигнальных кабелей, подключаемых к ПТ, должны напаиваться наконечники под винт М4. При подключении к ПТ должны использоваться шайбы-«звездочки» или гровер-шайбы.

Для защиты от механических повреждений рекомендуется их размещать в металлических трубах или металлорукавах. Допускается в одной трубе (металлорукаве) размещать несколько сигнальных кабелей.

Комплект кабелей нужной длины может быть заказан на предприятии-изготовителе ТС.

- 4.5. Монтаж ТС.
- 4.5.1. Закрепить на вертикальной плоскости монтажную планку и повесить на нее ТВ.
- 4.5.2. Ослабить гайки на шпильках сборно-сварной конструкции и извлечь имитатор ЭМР. Установить вместо него ЭМР таким образом, чтобы монтажная коробка МР200 или электронный блок МР400 находилась над трубопроводом, а стрелка на маркировке корпуса ЭМР совпадала с направлением потока жидкости. При этом ЭМР с маркировкой цифрой <1> устанавливается в подающий трубопровод, а с цифрой <2> в обратный.

При монтаже ЭМР необходимо уложить во фланцы поставляемые прокладки.

Для раздвижки фланцев при извлечении ЭМР или имитатора рекомендуется использовать специальное раздвижное устройство.

Для центровки ЭМР относительно фланцев используются:

- для ЭМР типоразмеров D_y 10, 20, 32 резиновые трубки, надеваемые на стягивающие шпильки, либо опорные бобышки в нижней части плоскости фланца;
- для ЭМР типоразмеров D_y 40, 65, 80, 150 соответствующие профили плоскостей фланцев.

ЗАПРЕЩАЕТСЯ поворачивать ЭМР, установленные в трубопровод, вокруг оси трубопровода.

ВНИМАНИЕ!

Установка ЭМР в трубопровод должна производится после проведения всех сварочных, строительных, малярных и прочих работ.

Для обеспечения электрического соединения корпуса ЭМР и трубопровода проводники, укрепленные снаружи на монтажной коробке MP200 или электронном блоке MP400, присоединяются к цилиндрической поверхности обоих фланцев с помощью латунных винтов М5 с зубчатыми шайбами.

После установки ЭМР в трубопроводы произвести электрическое подключение ЭМР к ТВ. Сигнальные кабели пропускаются через гермовводы корпуса ТВ и монтажной коробки ЭМР и подключаются к плате ТВ и кросс-плате ЭМР в соответствии со схемой соединения ТС, приведенной в Приложении 3.

4.5.3. Ввинчивающиеся ПТ типа КТПТР вворачиваются в защитные гильзы с использованием кольцевых прокладок и производится подключение сигнальных кабелей к головкам ПТ и ТВ в соответствии со схемой соединения ТС (Приложение 3).

Для улучшения теплопередачи при установке КТПТР допускается заливать в гильзы трансформаторное масло.

После подключения кабелей связи участки трубопровода в месте установки ПТ и узлы установки ПТ теплоизолируются с помощью теплоизолирующих материалов.

4.5.4. Кабели RS связи, импульсных сигналов и сетевой кабель по возможности крепятся к стене. Для защиты от механических повреждений рекомендуется их размещать в металлических трубах или металлорукавах.

Сетевой кабель прокладывается не ближе 30 см от сигнальных кабелей, если они проложены не в трубе или металлорукаве.

НЕ ДОПУСКАЕТСЯ крепить кабели к трубопроводу с теплоносителем.

4.5.5. Для выравнивания электрического потенциала трубопроводов, в которые установлены ЭМР MP200, их необходимо соединить проводом $S \ge 4 \text{ мм}^2$.

Для обеспечения защитного заземления TC корпус TB надежно соединяется с шиной заземления проводником сечением не меньше 4 мm^2 .

Пример сборочно-монтажной схемы для ТС с тремя ПР приведен на рис. 12.

5. ДЕМОНТАЖ

- 5.1. Для отправки TC на периодическую поверку необходимо демонтировать ПР, ПТ и ТВ в нижеуказанном порядке.
- 5.2. Отключить питание TC выключателем в нижнем отсеке TB. Обесточить цепь напряжения питания TB. Отключить кабель питания TB от сети.
- 5.3. Перед демонтажем ЭМР необходимо перекрыть движение жидкости в месте установки ЭМР, убедиться в полном снятии давления в трубопроводе и слить жидкость. Отсоединить от фланцев проводники, идущие к монтажной коробке ЭМР, и отсоединить сигнальные кабели от ТВ и ЭМР.

Для демонтажа ЭМР ослабить гайки на всех шпильках, извлечь две шпильки, прилегающие к монтажной коробке ЭМР, из фланцев и с помощью раздвижного устройства раздвинуть фланцы. Аккуратно вынуть ЭМР, установить вместо него имитатор, снять раздвижное устройство, вставить шпильки и затянуть гайки в соответствии с указанием п.4.4.2. У ЭМР перед упаковкой с помощью стяжного болта и специальных пластин обжать с торцов фторопластовую футеровку.

После завершения указанных работ возможно включение трубопровода в работу.

- 5.4. Извлечь ПТ из защитных гильз и отключить кабель связи ПТ-ТВ, промаркировав концы в соответствии со схемой соединения ТС (Приложения 3).
- 5.5. Отключить земляной проводник, соединяющий ТВ с шиной защитного заземления, от клеммы ТВ и снять ТВ с монтажной планки.
 - 5.6. Все составные части ТС уложить в заводскую транспортную тару.

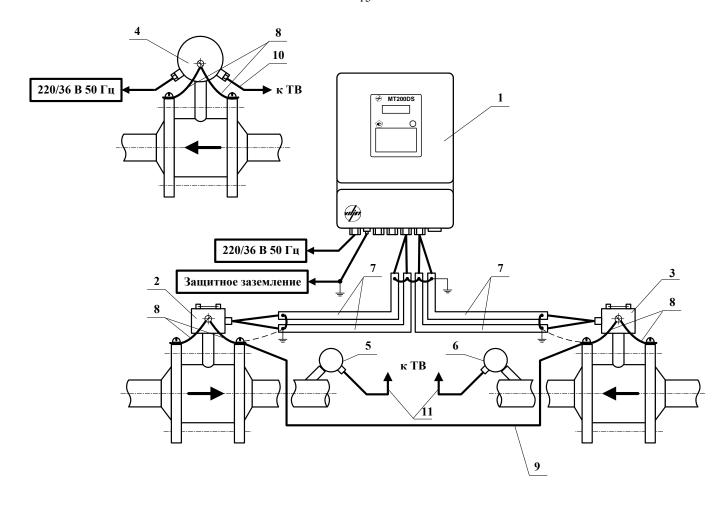
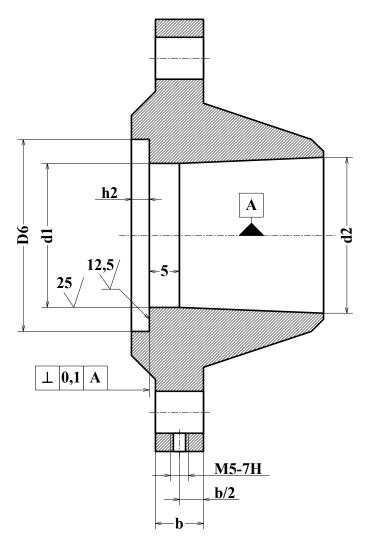


Рис. 12. Сборочно-монтажная схема ТС с тремя ПР на объекте.

1 – ТВ; 2 – ПР 1 (МР200); 3 – ПР 2 (МР200); 4 – ПР 4 (МР400); 5 – ПТ 1; 6 – ПТ 2; 7 – кабели связи МР200 в металлических трубах или металлорукавах; 8 – проводники электрического соединения корпуса ЭМР с трубопроводом; 9 – проводник электрического соединения трубопроводов, в которых устанавлены МР200; 10 – кабель связи импульсного выхода МР400 с ТВ; 11 – кабели связи ПТ с ТВ.

ПРИМЕЧАНИЕ.

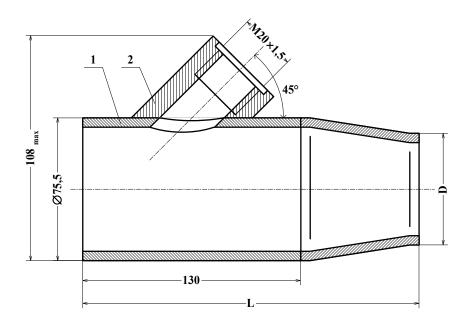
Если осуществление электрического соединения трубопроводов в местах установки MP200 с помощью проводника 9 невозможно, его можно исключить. В этом случае концы металлорукавов кабелей связи MP200 со стороны ПР не заземляются, а подключаются к корпусу монтажной коробки соответствующего MP200 или одному из фланцев (на схеме соединения указаны штриховой линией).


6. ВВОД В ЭКСПЛУАТАЦИЮ

- 6.1. Пуско-наладочные работы производятся представителями организации, имеющей разрешение от предприятия-изготовителя ТС на право проведения указанных работ либо представителями предприятия-изготовителя.
- 6.2. Пуско-наладочные работы проводятся в соответствии с документом «Теплосчетчик-регистратор MT200DS. Инструкция по настройке и проверке» B24.00-00.00 ИЗ.
 - 6.3. Теплосчетчик MT200DS можно включать в работу только после:
- полного прекращения динамических гидравлических процессов в трубопроводе, связанных с регулированием потока теплоносителя (работы на трубопроводе со сливом теплоносителя, перекрытие потока теплоносителя и т.п.);
- $-30^{-\text{ти}}$ минутной промывки ЭМР потоком жидкости (для обеспечения устойчивой работы ЭМР).
 - 6.4. Перед вводом в эксплуатацию необходимо провести следующие работы:
- ввести в ТС согласованные с теплоснабжающей организацией установочные данные, если они не были введены при выпуске из производства.
 - опломбировать составные части ТС в соответствии с ЭД.
- 6.5. После завершения процедуры ввода в эксплуатацию в паспорте на ТС заполняются и заверяются подписями представителя организации, проводившей пуско-наладочные работы, разделы: «Отметка о монтаже» и «Извещение о монтаже». Раздел «Извещение о монтаже» изымается из паспорта ТС и направляется в адрес предприятия-изготовителя.

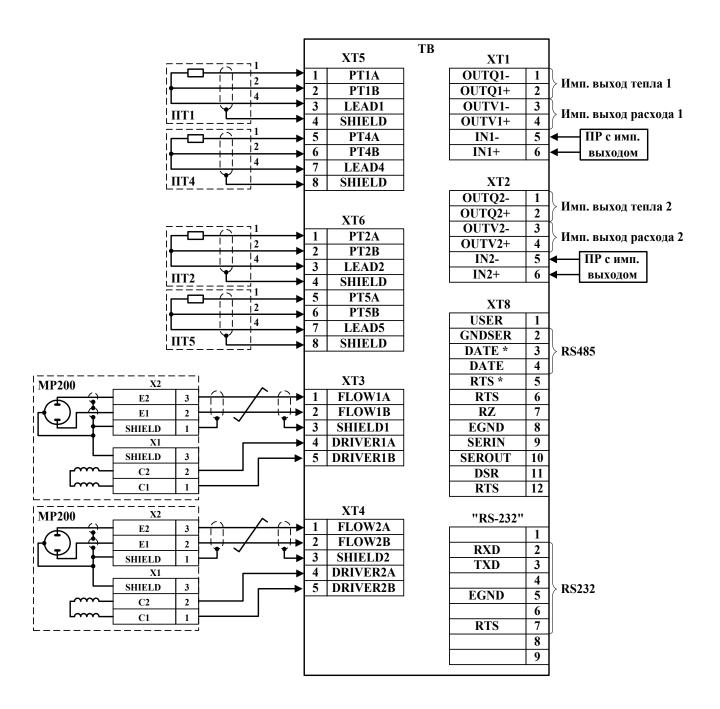
ВНИМАНИЕ!

Изготовитель не несет гарантийных обязательств в отношении прибора при несоблюдении правил и требований, изложенных в настоящем документе.


ПРИЛОЖЕНИЕ 1

D _y ,	D6,	h2,	b,	d1,	d2,	Заготовка	
MM	MM	MM	MM	MM	MM		
10	36 H12	1	12	*	*	Фланец 1-20-16 Ст25 ГОСТ 12821-80	
20	54 H12	1	12	19	21,2	Фланец 1-20-16 Ст25 ГОСТ 12821-80	
32	66 H12	3	13	32	35,8	Фланец 1-32-16 Ст25 ГОСТ 12821-80	
40	71 H12	3	13	41	41	Фланец 1-40-16 Ст25 ГОСТ 12821-80	
65	110 H12	3	15	66	66	Фланец 1-65-16 Ст25 ГОСТ 12821-80	
80	116 H12	3	17	81	81	Фланец 1-80-16 Ст25 ГОСТ 12821-80	
100	150 H12	3,5	17	102	104	Фланец 1-100-16 Ст25 ГОСТ 12821-80	
150	190 H12	1	19	140	147	с размерами фланца 1-150-16 Ст25 по ГОСТ 12821-80 за исключением размера d1	

^{* -} доработка для обеспечения Dy производится по чертежам ЗАО «ВЗЛЕТ».


Доработка стандартных фланцев по ГОСТ 12821-80 при их использовании для установки ЭМР.

1 – расширитель; 2 – штуцер для установки ПТ.

$\mathbf{D}_{\mathbf{y}}$	D, мм	L, мм	Масса, кг
50	57	200	1,4
40	45	200	1,4
32	38	185	1,3

Расширитель для установки преобразователей температуры в трубопроводы малых диаметров.

Схема соединений теплосчетчика.

ПТ1, ПТ2 – комплект ТСП №1 ПТ4, ПТ5 – комплект ТСП №2

im_dsv_2.doc6